IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v72y2016i4p1325-1335.html
   My bibliography  Save this article

Label‐noise resistant logistic regression for functional data classification with an application to Alzheimer's disease study

Author

Listed:
  • Seokho Lee
  • Hyejin Shin
  • Sang Han Lee

Abstract

Alzheimer's disease (AD) is usually diagnosed by clinicians through cognitive and functional performance test with a potential risk of misdiagnosis. Since the progression of AD is known to cause structural changes in the corpus callosum (CC), the CC thickness can be used as a functional covariate in AD classification problem for a diagnosis. However, misclassified class labels negatively impact the classification performance. Motivated by AD–CC association studies, we propose a logistic regression for functional data classification that is robust to misdiagnosis or label noise. Specifically, our logistic regression model is constructed by adopting individual intercepts to functional logistic regression model. This approach enables to indicate which observations are possibly mislabeled and also lead to a robust and efficient classifier. An effective algorithm using MM algorithm provides simple closed‐form update formulas. We test our method using synthetic datasets to demonstrate its superiority over an existing method, and apply it to differentiating patients with AD from healthy normals based on CC from MRI.

Suggested Citation

  • Seokho Lee & Hyejin Shin & Sang Han Lee, 2016. "Label‐noise resistant logistic regression for functional data classification with an application to Alzheimer's disease study," Biometrics, The International Biometric Society, vol. 72(4), pages 1325-1335, December.
  • Handle: RePEc:bla:biomet:v:72:y:2016:i:4:p:1325-1335
    DOI: 10.1111/biom.12504
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.12504
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.12504?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shin, Hyejin, 2008. "An extension of Fisher's discriminant analysis for stochastic processes," Journal of Multivariate Analysis, Elsevier, vol. 99(6), pages 1191-1216, July.
    2. Lin, Yi, 2004. "A note on margin-based loss functions in classification," Statistics & Probability Letters, Elsevier, vol. 68(1), pages 73-82, June.
    3. de Leeuw, Jan, 2006. "Principal component analysis of binary data by iterated singular value decomposition," Computational Statistics & Data Analysis, Elsevier, vol. 50(1), pages 21-39, January.
    4. She, Yiyuan & Owen, Art B., 2011. "Outlier Detection Using Nonconvex Penalized Regression," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 626-639.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Samami, Maryam & Akbari, Ebrahim & Abdar, Moloud & Plawiak, Pawel & Nematzadeh, Hossein & Basiri, Mohammad Ehsan & Makarenkov, Vladimir, 2020. "A mixed solution-based high agreement filtering method for class noise detection in binary classification," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    2. Yang, Seong J. & Shin, Hyejin & Lee, Sang Han & Lee, Seokho, 2020. "Functional linear regression model with randomly censored data: Predicting conversion time to Alzheimer ’s disease," Computational Statistics & Data Analysis, Elsevier, vol. 150(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Leeuw, Jan & Lange, Kenneth, 2009. "Sharp quadratic majorization in one dimension," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2471-2484, May.
    2. Wang, Fa, 2017. "Maximum likelihood estimation and inference for high dimensional nonlinear factor models with application to factor-augmented regressions," MPRA Paper 93484, University Library of Munich, Germany, revised 19 May 2019.
    3. Jose Giovany Babativa-Márquez & José Luis Vicente-Villardón, 2021. "Logistic Biplot by Conjugate Gradient Algorithms and Iterated SVD," Mathematics, MDPI, vol. 9(16), pages 1-19, August.
    4. Toshiaki Tsukurimichi & Yu Inatsu & Vo Nguyen Le Duy & Ichiro Takeuchi, 2022. "Conditional selective inference for robust regression and outlier detection using piecewise-linear homotopy continuation," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(6), pages 1197-1228, December.
    5. Umberto Amato & Anestis Antoniadis & Italia De Feis & Irene Gijbels, 2021. "Penalised robust estimators for sparse and high-dimensional linear models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 1-48, March.
    6. Young‐Geun Choi & Lawrence P. Hanrahan & Derek Norton & Ying‐Qi Zhao, 2022. "Simultaneous spatial smoothing and outlier detection using penalized regression, with application to childhood obesity surveillance from electronic health records," Biometrics, The International Biometric Society, vol. 78(1), pages 324-336, March.
    7. Wentao Qu & Xianchao Xiu & Huangyue Chen & Lingchen Kong, 2023. "A Survey on High-Dimensional Subspace Clustering," Mathematics, MDPI, vol. 11(2), pages 1-39, January.
    8. Xiangyu Chang & Yinghui Huang & Mei Li & Xin Bo & Subodha Kumar, 2021. "Efficient Detection of Environmental Violators: A Big Data Approach," Production and Operations Management, Production and Operations Management Society, vol. 30(5), pages 1246-1270, May.
    9. Amor Keziou & Aida Toma, 2021. "A Robust Version of the Empirical Likelihood Estimator," Mathematics, MDPI, vol. 9(8), pages 1-19, April.
    10. Thompson, Ryan, 2022. "Robust subset selection," Computational Statistics & Data Analysis, Elsevier, vol. 169(C).
    11. Zhang, Jing & Wang, Qin & Mays, D'Arcy, 2021. "Robust MAVE through nonconvex penalized regression," Computational Statistics & Data Analysis, Elsevier, vol. 160(C).
    12. Ling Peng & Xiaohui Liu & Xiangyong Tan & Yiweng Zhou & Shihua Luo, 2024. "The statistical rate for support matrix machines under low rankness and row (column) sparsity," Statistical Papers, Springer, vol. 65(7), pages 4567-4598, September.
    13. Adam N. Elmachtoub & Paul Grigas, 2022. "Smart “Predict, then Optimize”," Management Science, INFORMS, vol. 68(1), pages 9-26, January.
    14. Hayashi, Kenichi, 2012. "A simple extension of boosting for asymmetric mislabeled data," Statistics & Probability Letters, Elsevier, vol. 82(2), pages 348-356.
    15. Tasos Kalandrakis, 2006. "Roll Call Data and Ideal Points," Wallis Working Papers WP42, University of Rochester - Wallis Institute of Political Economy.
    16. John B. Holmes & Matthew R. Schofield & Richard J. Barker, 2022. "Pólya‐gamma data augmentation and latent variable models for multivariate binomial data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(1), pages 194-218, January.
    17. Robert T. Krafty, 2016. "Discriminant Analysis of Time Series in the Presence of Within-Group Spectral Variability," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(4), pages 435-450, July.
    18. Yang Liu, 2020. "A Riemannian Optimization Algorithm for Joint Maximum Likelihood Estimation of High-Dimensional Exploratory Item Factor Analysis," Psychometrika, Springer;The Psychometric Society, vol. 85(2), pages 439-468, June.
    19. Wang, Fa, 2022. "Maximum likelihood estimation and inference for high dimensional generalized factor models with application to factor-augmented regressions," Journal of Econometrics, Elsevier, vol. 229(1), pages 180-200.
    20. Won Chang & Murali Haran & Patrick Applegate & David Pollard, 2016. "Calibrating an Ice Sheet Model Using High-Dimensional Binary Spatial Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 57-72, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:72:y:2016:i:4:p:1325-1335. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.