IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v107y2015icp111-114.html
   My bibliography  Save this article

On the non-existence of maximum likelihood estimates for the extended exponential power distribution and its generalizations

Author

Listed:
  • Tumlinson, Samuel E.

Abstract

In this work, we show that the maximum likelihood estimates fail to exist for the extended exponential power distribution and its univariate generalizations.

Suggested Citation

  • Tumlinson, Samuel E., 2015. "On the non-existence of maximum likelihood estimates for the extended exponential power distribution and its generalizations," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 111-114.
  • Handle: RePEc:eee:stapro:v:107:y:2015:i:c:p:111-114
    DOI: 10.1016/j.spl.2015.08.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715215002886
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2015.08.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Giulio Bottazzi & Angelo Secchi, 2011. "A new class of asymmetric exponential power densities with applications to economics and finance," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 20(4), pages 991-1030, August.
    2. Choy, S. T. Boris & Walker, Stephen G., 2003. "The extended exponential power distribution and Bayesian robustness," Statistics & Probability Letters, Elsevier, vol. 65(3), pages 227-232, November.
    3. Zhu, Dongming & Zinde-Walsh, Victoria, 2009. "Properties and estimation of asymmetric exponential power distribution," Journal of Econometrics, Elsevier, vol. 148(1), pages 86-99, January.
    4. Saralees Nadarajah, 2005. "A generalized normal distribution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 32(7), pages 685-694.
    5. Zeckhauser, Richard & Thompson, Mark, 1970. "Linear Regression with Non-Normal Error Terms," The Review of Economics and Statistics, MIT Press, vol. 52(3), pages 280-286, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Xiaochun, 2019. "On tail fatness of macroeconomic dynamics," Journal of Macroeconomics, Elsevier, vol. 62(C).
    2. Bao, Te & Diks, Cees & Li, Hao, 2018. "A generalized CAPM model with asymmetric power distributed errors with an application to portfolio construction," Economic Modelling, Elsevier, vol. 68(C), pages 611-621.
    3. Reiner Franke, 2015. "How Fat-Tailed is US Output Growth?," Metroeconomica, Wiley Blackwell, vol. 66(2), pages 213-242, May.
    4. Huber, Peter & Oberhofer, Harald & Pfaffermayr, Michael, 2017. "Who creates jobs? Econometric modeling and evidence for Austrian firm level data," European Economic Review, Elsevier, vol. 91(C), pages 57-71.
    5. Bernardi, Mauro & Bottone, Marco & Petrella, Lea, 2018. "Bayesian quantile regression using the skew exponential power distribution," Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 92-111.
    6. Fabrizio Leisen & Luca Rossini & Cristiano Villa, 2020. "Loss-based approach to two-piece location-scale distributions with applications to dependent data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(2), pages 309-333, June.
    7. Mundt, Philipp & Oh, Ilfan, 2019. "Asymmetric competition, risk, and return distribution," Economics Letters, Elsevier, vol. 179(C), pages 29-32.
    8. Karol I. Santoro & Héctor J. Gómez & Inmaculada Barranco-Chamorro & Héctor W. Gómez, 2022. "Extended Half-Power Exponential Distribution with Applications to COVID-19 Data," Mathematics, MDPI, vol. 10(6), pages 1-16, March.
    9. Tata Subba Rao & Granville Tunnicliffe Wilson & Andrew Harvey & Rutger-Jan Lange, 2017. "Volatility Modeling with a Generalized t Distribution," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(2), pages 175-190, March.
    10. Asquith, William H., 2014. "Parameter estimation for the 4-parameter Asymmetric Exponential Power distribution by the method of L-moments using R," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 955-970.
    11. Freeman, Mark C. & Wagner, Gernot & Zeckhauser, Richard J., 2015. "Climate Sensitivity Uncertainty: When Is Good News Bad?," Working Paper Series rwp15-002, Harvard University, John F. Kennedy School of Government.
    12. Heinrich, Torsten & Yang, Jangho & Dai, Shuanping, 2020. "Growth, development, and structural change at the firm-level: The example of the PR China," MPRA Paper 105011, University Library of Munich, Germany.
    13. Campi, Mercedes & Dueñas, Marco, 2020. "Volatility and economic growth in the twentieth century," Structural Change and Economic Dynamics, Elsevier, vol. 53(C), pages 330-343.
    14. García, V.J. & Gómez-Déniz, E. & Vázquez-Polo, F.J., 2010. "A new skew generalization of the normal distribution: Properties and applications," Computational Statistics & Data Analysis, Elsevier, vol. 54(8), pages 2021-2034, August.
    15. Massing, Till & Puente-Ajovín, Miguel & Ramos, Arturo, 2020. "On the parametric description of log-growth rates of cities’ sizes of four European countries and the USA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    16. Scharfenaker, Ellis, 2020. "Implications of quantal response statistical equilibrium," Journal of Economic Dynamics and Control, Elsevier, vol. 119(C).
    17. Thomas Brenner & Matthias Duschl, 2018. "Modeling Firm and Market Dynamics: A Flexible Model Reproducing Existing Stylized Facts on Firm Growth," Computational Economics, Springer;Society for Computational Economics, vol. 52(3), pages 745-772, October.
    18. James Hansen & James McDonald & Panayiotis Theodossiou & Brad Larsen, 2010. "Partially Adaptive Econometric Methods For Regression and Classification," Computational Economics, Springer;Society for Computational Economics, vol. 36(2), pages 153-169, August.
    19. Xianzi Yang & Chen Zhang & Yu Yang & Yaqi Wu & Po Yun & Zulfiqar Ali Wagan, 2020. "China’s Carbon Pricing Based on Heterogeneous Tail Distribution," Sustainability, MDPI, vol. 12(7), pages 1-16, April.
    20. Marco Bottone & Lea Petrella & Mauro Bernardi, 2021. "Unified Bayesian conditional autoregressive risk measures using the skew exponential power distribution," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(3), pages 1079-1107, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:107:y:2015:i:c:p:111-114. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.