IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v198y2022icp172-187.html
   My bibliography  Save this article

Series form of the characteristic functions of scale mixtures of multivariate skew-normal distributions

Author

Listed:
  • Kim, SungBum
  • Kim, Hyoung-Moon

Abstract

Based on two series representations of the error function and a series representation of the Faddeeva function, the characteristic functions of scale mixtures of skew-normal distributions in univariate and multivariate cases are derived in series form instead of the previously suggested two-dimensional integral form without using contour integration. This is accomplished by applying the Lebesgue dominated convergence theorem to change the order of integral and limit. After integrating out each mixing variable, the series representation is expressed as in closed-form. Series form greatly reduces the computing times compared to the integral form, which is visualized via parallel box plots in a skew-t and a skew-slash distributions and a result of application on goodness-of-fit test.

Suggested Citation

  • Kim, SungBum & Kim, Hyoung-Moon, 2022. "Series form of the characteristic functions of scale mixtures of multivariate skew-normal distributions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 198(C), pages 172-187.
  • Handle: RePEc:eee:matcom:v:198:y:2022:i:c:p:172-187
    DOI: 10.1016/j.matcom.2022.02.033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475422000866
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2022.02.033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Emrah Altun & Huseyin Tatlidil & Gamze Ozel, 2019. "Value-at-risk estimation with new skew extension of generalized normal distribution," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 48(14), pages 3663-3681, July.
    2. Cornelis J. Potgieter & Marc G. Genton, 2013. "Characteristic Function-based Semiparametric Inference for Skew-symmetric Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(3), pages 471-490, September.
    3. Jiménez-Gamero, M. Dolores & Kim, Hyoung-Moon, 2015. "Fast goodness-of-fit tests based on the characteristic function," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 172-191.
    4. S. T. Boris Choy & Adrian F. M. Smith, 1997. "On Robust Analysis of a Normal Location Parameter," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(2), pages 463-474.
    5. Kotz,Samuel & Nadarajah,Saralees, 2004. "Multivariate T-Distributions and Their Applications," Cambridge Books, Cambridge University Press, number 9780521826549.
    6. Kim, Hyoung-Moon & Genton, Marc G., 2011. "Characteristic functions of scale mixtures of multivariate skew-normal distributions," Journal of Multivariate Analysis, Elsevier, vol. 102(7), pages 1105-1117, August.
    7. Branco, Márcia D. & Dey, Dipak K., 2001. "A General Class of Multivariate Skew-Elliptical Distributions," Journal of Multivariate Analysis, Elsevier, vol. 79(1), pages 99-113, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Contreras-Reyes, Javier E., 2022. "Rényi entropy and divergence for VARFIMA processes based on characteristic and impulse response functions," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S. Rao Jammalamadaka & Tomasz J. Kozubowski, 2017. "A General Approach for Obtaining Wrapped Circular Distributions via Mixtures," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 79(1), pages 133-157, February.
    2. Koliai, Lyes, 2016. "Extreme risk modeling: An EVT–pair-copulas approach for financial stress tests," Journal of Banking & Finance, Elsevier, vol. 70(C), pages 1-22.
    3. Arellano-Valle, Reinaldo B. & Azzalini, Adelchi, 2021. "A formulation for continuous mixtures of multivariate normal distributions," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
    4. Yin, Chuancun & Balakrishnan, Narayanaswamy, 2024. "Stochastic representations and probabilistic characteristics of multivariate skew-elliptical distributions," Journal of Multivariate Analysis, Elsevier, vol. 199(C).
    5. Kim, Hyoung-Moon & Genton, Marc G., 2011. "Characteristic functions of scale mixtures of multivariate skew-normal distributions," Journal of Multivariate Analysis, Elsevier, vol. 102(7), pages 1105-1117, August.
    6. Amiri, Mehdi & Izadkhah, Salman & Jamalizadeh, Ahad, 2020. "Linear orderings of the scale mixtures of the multivariate skew-normal distribution," Journal of Multivariate Analysis, Elsevier, vol. 179(C).
    7. Paola Stolfi & Mauro Bernardi & Lea Petrella, 2018. "The sparse method of simulated quantiles: An application to portfolio optimization," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 72(3), pages 375-398, August.
    8. Sreenivasa Rao Jammalamadaka & Emanuele Taufer & Gyorgy H. Terdik, 2021. "On Multivariate Skewness and Kurtosis," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 607-644, August.
    9. Azzalini, Adelchi, 2022. "An overview on the progeny of the skew-normal family— A personal perspective," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    10. Kim, Hyoung-Moon & Maadooliat, Mehdi & Arellano-Valle, Reinaldo B. & Genton, Marc G., 2016. "Skewed factor models using selection mechanisms," Journal of Multivariate Analysis, Elsevier, vol. 145(C), pages 162-177.
    11. Kim, Hyoung-Moon & Ryu, Duchwan & Mallick, Bani K. & Genton, Marc G., 2014. "Mixtures of skewed Kalman filters," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 228-251.
    12. Vilca, Filidor & Balakrishnan, N. & Zeller, Camila Borelli, 2014. "Multivariate Skew-Normal Generalized Hyperbolic distribution and its properties," Journal of Multivariate Analysis, Elsevier, vol. 128(C), pages 73-85.
    13. Tsung-I Lin & Pal Wu & Geoffrey McLachlan & Sharon Lee, 2015. "A robust factor analysis model using the restricted skew- $$t$$ t distribution," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(3), pages 510-531, September.
    14. Kim, Hyoung-Moon, 2008. "A note on scale mixtures of skew normal distribution," Statistics & Probability Letters, Elsevier, vol. 78(13), pages 1694-1701, September.
    15. Wraith, Darren & Forbes, Florence, 2015. "Location and scale mixtures of Gaussians with flexible tail behaviour: Properties, inference and application to multivariate clustering," Computational Statistics & Data Analysis, Elsevier, vol. 90(C), pages 61-73.
    16. Adcock, C.J., 2014. "Mean–variance–skewness efficient surfaces, Stein’s lemma and the multivariate extended skew-Student distribution," European Journal of Operational Research, Elsevier, vol. 234(2), pages 392-401.
    17. Chen Tong & Peter Reinhard Hansen & Ilya Archakov, 2024. "Cluster GARCH," Papers 2406.06860, arXiv.org.
    18. Jiménez-Gamero, M.D. & Alba-Fernández, M.V. & Jodrá, P. & Barranco-Chamorro, I., 2017. "Fast tests for the two-sample problem based on the empirical characteristic function," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 137(C), pages 390-410.
    19. Wan-Lun Wang, 2019. "Mixture of multivariate t nonlinear mixed models for multiple longitudinal data with heterogeneity and missing values," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 196-222, March.
    20. Panagiotelis, Anastasios & Smith, Michael, 2010. "Bayesian skew selection for multivariate models," Computational Statistics & Data Analysis, Elsevier, vol. 54(7), pages 1824-1839, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:198:y:2022:i:c:p:172-187. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.