IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0217967.html
   My bibliography  Save this article

Functional form estimation using oblique projection matrices for LS-SVM regression models

Author

Listed:
  • Alexander Caicedo
  • Carolina Varon
  • Sabine Van Huffel
  • Johan A K Suykens

Abstract

Kernel regression models have been used as non-parametric methods for fitting experimental data. However, due to their non-parametric nature, they belong to the so-called “black box” models, indicating that the relation between the input variables and the output, depending on the kernel selection, is unknown. In this paper we propose a new methodology to retrieve the relation between each input regressor variable and the output in a least squares support vector machine (LS-SVM) regression model. The method is based on oblique subspace projectors (ObSP), which allows to decouple the influence of input regressors on the output by including the undesired variables in the null space of the projection matrix. Such functional relations are represented by the nonlinear transformation of the input regressors, and their subspaces are estimated using appropriate kernel evaluations. We exploit the properties of ObSP in order to decompose the output of the obtained regression model as a sum of the partial nonlinear contributions and interaction effects of the input variables, we called this methodology Nonlinear ObSP (NObSP). We compare the performance of the proposed algorithm with the component selection and smooth operator (COSSO) for smoothing spline ANOVA models. We use as benchmark 2 toy examples and a real life regression model using the concrete strength dataset from the UCI machine learning repository. We showed that NObSP is able to outperform COSSO, producing stable estimations of the functional relations between the input regressors and the output, without the use of prior-knowledge. This methodology can be used in order to understand the functional relations between the inputs and the output in a regression model, retrieving the physical interpretation of the regression models.

Suggested Citation

  • Alexander Caicedo & Carolina Varon & Sabine Van Huffel & Johan A K Suykens, 2019. "Functional form estimation using oblique projection matrices for LS-SVM regression models," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-21, June.
  • Handle: RePEc:plo:pone00:0217967
    DOI: 10.1371/journal.pone.0217967
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0217967
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0217967&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0217967?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Huang, Jianhua Z., 1998. "Functional ANOVA Models for Generalized Regression," Journal of Multivariate Analysis, Elsevier, vol. 67(1), pages 49-71, October.
    2. Vanya Van Belle & Ben Van Calster, 2015. "Visualizing Risk Prediction Models," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-16, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lan Xue & Hua Liang, 2010. "Polynomial Spline Estimation for a Generalized Additive Coefficient Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(1), pages 26-46, March.
    2. Yaniv Hanoch & Jonathan Rolison & Alexandra M. Freund, 2019. "Reaping the Benefits and Avoiding the Risks: Unrealistic Optimism in the Health Domain," Risk Analysis, John Wiley & Sons, vol. 39(4), pages 792-804, April.
    3. Yu, Lili & Peace, Karl E., 2012. "Spline nonparametric quasi-likelihood regression within the frame of the accelerated failure time model," Computational Statistics & Data Analysis, Elsevier, vol. 56(9), pages 2675-2687.
    4. Huang, Jianhua Z., 2003. "Asymptotics for polynomial spline regression under weak conditions," Statistics & Probability Letters, Elsevier, vol. 65(3), pages 207-216, November.
    5. Chen, Xiaohong, 2007. "Large Sample Sieve Estimation of Semi-Nonparametric Models," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 76, Elsevier.
    6. Miao Yang & Lan Xue & Lijian Yang, 2016. "Variable selection for additive model via cumulative ratios of empirical strengths total," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(3), pages 595-616, September.
    7. Cui, Xia & Zhao, Weihua & Lian, Heng & Liang, Hua, 2019. "Pursuit of dynamic structure in quantile additive models with longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 130(C), pages 42-60.
    8. Amirhossein Jalali & Alberto Alvarez-Iglesias & Davood Roshan & John Newell, 2019. "Visualising statistical models using dynamic nomograms," PLOS ONE, Public Library of Science, vol. 14(11), pages 1-15, November.
    9. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0217967. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.