Asymptotic results for the regression function estimate on continuous time stationary and ergodic data
Author
Abstract
Suggested Citation
DOI: 10.1515/strm-2012-1134
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Castellana, J. V. & Leadbetter, M. R., 1986. "On smoothed probability density estimation for stationary processes," Stochastic Processes and their Applications, Elsevier, vol. 21(2), pages 179-193, February.
- Yakowitz, Sidney & Györfi, László & Kieffer, John & Morvai, Gusztáv, 1999. "Strongly Consistent Nonparametric Forecasting and Regression for Stationary Ergodic Sequences," Journal of Multivariate Analysis, Elsevier, vol. 71(1), pages 24-41, October.
- Laib, Naâmane & Louani, Djamal, 2010. "Nonparametric kernel regression estimation for functional stationary ergodic data: Asymptotic properties," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2266-2281, November.
- Gérard Biau & Kevin Bleakley & László Györfi & György Ottucsák, 2010. "Nonparametric sequential prediction of time series," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(3), pages 297-317.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Sultana Didi & Salim Bouzebda, 2022. "Wavelet Density and Regression Estimators for Continuous Time Functional Stationary and Ergodic Processes," Mathematics, MDPI, vol. 10(22), pages 1-37, November.
- Mohamed Chaouch & Naâmane Laïb & Djamal Louani, 2017. "Rate of uniform consistency for a class of mode regression on functional stationary ergodic data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(1), pages 19-47, March.
- Dalalyan Arnak S. & Kutoyants Yury A., 2004. "On second order minimax estimation of invariant density for ergodic diffusion," Statistics & Risk Modeling, De Gruyter, vol. 22(1), pages 17-42, January.
- Chaouch, Mohamed & Laïb, Naâmane, 2019. "Optimal asymptotic MSE of kernel regression estimate for continuous time processes with missing at random response," Statistics & Probability Letters, Elsevier, vol. 154(C), pages 1-1.
- Ling, Nengxiang & Wang, Chao & Ling, Jin, 2016. "Modified kernel regression estimation with functional time series data," Statistics & Probability Letters, Elsevier, vol. 114(C), pages 78-85.
- Ardelean, Vlad & Pleier, Thomas, 2013. "Outliers & predicting time series: A comparative study," FAU Discussion Papers in Economics 05/2013, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
- Liu, Qiaojing & Zhao, Shoujiang, 2013. "Pointwise and uniform moderate deviations for nonparametric regression function estimator on functional data," Statistics & Probability Letters, Elsevier, vol. 83(5), pages 1372-1381.
- Llop, P. & Forzani, L. & Fraiman, R., 2011. "On local times, density estimation and supervised classification from functional data," Journal of Multivariate Analysis, Elsevier, vol. 102(1), pages 73-86, January.
- Gao, Min & Yang, Wenzhi & Wu, Shipeng & Yu, Wei, 2022. "Asymptotic normality of residual density estimator in stationary and explosive autoregressive models," Computational Statistics & Data Analysis, Elsevier, vol. 175(C).
- Labrador, Boris, 2008. "Strong pointwise consistency of the kT -occupation time density estimator," Statistics & Probability Letters, Elsevier, vol. 78(9), pages 1128-1137, July.
- Laïb, Naâmane & Louani, Djamal, 2019. "Asymptotic normality of kernel density function estimator from continuous time stationary and dependent processes," Statistics & Probability Letters, Elsevier, vol. 145(C), pages 187-196.
- Aneiros, Germán & Cao, Ricardo & Fraiman, Ricardo & Genest, Christian & Vieu, Philippe, 2019. "Recent advances in functional data analysis and high-dimensional statistics," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 3-9.
- Emmanuel Guerre, 2004.
"Design-Adaptive Pointwise Nonparametric Regression Estimation for Recurrent Markov Time Series,"
Working Papers
2004-22, Center for Research in Economics and Statistics.
- Guerre, 2004. "Design-Adaptive Pointwise Nonparametric Regression Estimation For Recurrent Markov Time Series," Econometrics 0411007, University Library of Munich, Germany.
- Bouzebda, Salim & Chaouch, Mohamed, 2022. "Uniform limit theorems for a class of conditional Z-estimators when covariates are functions," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
- Mohamed Chaouch & Salah Khardani, 2015. "Randomly censored quantile regression estimation using functional stationary ergodic data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 27(1), pages 65-87, March.
- Chaouch, Mohamed, 2019. "Volatility estimation in a nonlinear heteroscedastic functional regression model with martingale difference errors," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 129-148.
- Leblanc, Frédérique, 1996. "Wavelet linear density estimator for a discrete-time stochastic process: Lp-losses," Statistics & Probability Letters, Elsevier, vol. 27(1), pages 71-84, March.
- Wu, Wei Biao & Huang, Yinxiao & Huang, Yibi, 2010. "Kernel estimation for time series: An asymptotic theory," Stochastic Processes and their Applications, Elsevier, vol. 120(12), pages 2412-2431, December.
- Krebs, Johannes T.N., 2019. "The bootstrap in kernel regression for stationary ergodic data when both response and predictor are functions," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 620-639.
- Zhiyong Zhou & Zhengyan Lin, 2016. "Asymptotic normality of locally modelled regression estimator for functional data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(1), pages 116-131, March.
More about this item
Keywords
Consistency; continuous time processes; ergodic data; kernel estimator; rate of convergence; regression function; Consistency; continuous time processes; ergodic data; kernel estimator; rate of convergence; regression function;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:strimo:v:31:y:2014:i:2:p:22:n:1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.