IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v27y1996i1p71-84.html
   My bibliography  Save this article

Wavelet linear density estimator for a discrete-time stochastic process: Lp-losses

Author

Listed:
  • Leblanc, Frédérique

Abstract

We establish that the Lp'-loss (2 [less-than-or-equals, slant] p' > [infinity]) of the linear wavelet density estimator for a stochastic process converges at the rate N[-s'/(2s' + 1)] (s' = 1 - 1/p + 1/p') when the density f belongs to the Besov space Bp,qs. This estimator is optimal when p' = p. We suppose that the process is strongly mixing and we show that the rate of convergence essentially depends on the behavior of a special quadratic characteristic. After a discussion about the assumptions of the main result, we present some examples of Markov processes which satisfy these assumptions.

Suggested Citation

  • Leblanc, Frédérique, 1996. "Wavelet linear density estimator for a discrete-time stochastic process: Lp-losses," Statistics & Probability Letters, Elsevier, vol. 27(1), pages 71-84, March.
  • Handle: RePEc:eee:stapro:v:27:y:1996:i:1:p:71-84
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0167-7152(95)00046-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nummelin, Esa & Tuominen, Pekka, 1982. "Geometric ergodicity of Harris recurrent Marcov chains with applications to renewal theory," Stochastic Processes and their Applications, Elsevier, vol. 12(2), pages 187-202, March.
    2. Bosq, Denis, 1995. "Optimal asymptotic quadratic error of density estimators for strong mixing or chaotic data," Statistics & Probability Letters, Elsevier, vol. 22(4), pages 339-347, March.
    3. Tran, Lanh Tat, 1990. "Kernel density estimation under dependence," Statistics & Probability Letters, Elsevier, vol. 10(3), pages 193-201, August.
    4. Castellana, J. V. & Leadbetter, M. R., 1986. "On smoothed probability density estimation for stationary processes," Stochastic Processes and their Applications, Elsevier, vol. 21(2), pages 179-193, February.
    5. Kerkyacharian, G. & Picard, D., 1992. "Density estimation in Besov spaces," Statistics & Probability Letters, Elsevier, vol. 13(1), pages 15-24, January.
    6. Lanh Tran, 1990. "Recursive kernel density estimators under a weak dependence condition," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 42(2), pages 305-329, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aleksandr Beknazaryan & Hailin Sang & Peter Adamic, 2023. "On the integrated mean squared error of wavelet density estimation for linear processes," Statistical Inference for Stochastic Processes, Springer, vol. 26(2), pages 235-254, July.
    2. Masry, Elias, 1997. "Multivariate probability density estimation by wavelet methods: Strong consistency and rates for stationary time series," Stochastic Processes and their Applications, Elsevier, vol. 67(2), pages 177-193, May.
    3. B. L. S. Prakasa Rao, 2010. "Wavelet linear estimation for derivatives of a density from observations of mixtures with varying mixing proportions," Indian Journal of Pure and Applied Mathematics, Springer, vol. 41(1), pages 275-291, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Masry, Elias, 1997. "Multivariate probability density estimation by wavelet methods: Strong consistency and rates for stationary time series," Stochastic Processes and their Applications, Elsevier, vol. 67(2), pages 177-193, May.
    2. Liebscher E., 2001. "Estimation Of The Density And The Regression Function Under Mixing Conditions," Statistics & Risk Modeling, De Gruyter, vol. 19(1), pages 9-26, January.
    3. Sultana Didi & Salim Bouzebda, 2022. "Wavelet Density and Regression Estimators for Continuous Time Functional Stationary and Ergodic Processes," Mathematics, MDPI, vol. 10(22), pages 1-37, November.
    4. Michel Harel & Jean-François Lenain & Joseph Ngatchou-Wandji, 2016. "Asymptotic behaviour of binned kernel density estimators for locally non-stationary random fields," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(2), pages 296-321, June.
    5. Kato, Takeshi, 1999. "Density estimation by truncated wavelet expansion," Statistics & Probability Letters, Elsevier, vol. 43(2), pages 159-168, June.
    6. Gérard, Kerkyacharian & Dominique, Picard, 1997. "Limit of the quadratic risk in density estimation using linear methods," Statistics & Probability Letters, Elsevier, vol. 31(4), pages 299-312, February.
    7. Dalalyan Arnak S. & Kutoyants Yury A., 2004. "On second order minimax estimation of invariant density for ergodic diffusion," Statistics & Risk Modeling, De Gruyter, vol. 22(1), pages 17-42, January.
    8. N. Hosseinioun & H. Doosti & H. Nirumand, 2012. "Nonparametric estimation of the derivatives of a density by the method of wavelet for mixing sequences," Statistical Papers, Springer, vol. 53(1), pages 195-203, February.
    9. Biau, Gérard, 2002. "Optimal asymptotic quadratic errors of density estimators on random fields," Statistics & Probability Letters, Elsevier, vol. 60(3), pages 297-307, December.
    10. Labrador, Boris, 2008. "Strong pointwise consistency of the kT -occupation time density estimator," Statistics & Probability Letters, Elsevier, vol. 78(9), pages 1128-1137, July.
    11. Karun Adusumilli & Taisuke Otsu, 2015. "Nonparametric instrumental regression with errors in variables," STICERD - Econometrics Paper Series /2015/585, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    12. Wu, Wei Biao & Huang, Yinxiao & Huang, Yibi, 2010. "Kernel estimation for time series: An asymptotic theory," Stochastic Processes and their Applications, Elsevier, vol. 120(12), pages 2412-2431, December.
    13. Liebscher, Eckhard, 1999. "Asymptotic normality of nonparametric estimators under [alpha]-mixing condition," Statistics & Probability Letters, Elsevier, vol. 43(3), pages 243-250, July.
    14. A. Antoniadis, 1997. "Wavelets in statistics: A review," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 6(2), pages 97-130, August.
    15. Durastanti, Claudio, 2016. "Adaptive global thresholding on the sphere," Journal of Multivariate Analysis, Elsevier, vol. 151(C), pages 110-132.
    16. Oberhofer, Walter & Haupt, Harry, 2005. "The asymptotic distribution of the unconditional quantile estimator under dependence," Statistics & Probability Letters, Elsevier, vol. 73(3), pages 243-250, July.
    17. Antonio Cosma & Olivier Scaillet & Rainer von Sachs, 2005. "Multiariate Wavelet-based sahpe preserving estimation for dependant observation," FAME Research Paper Series rp144, International Center for Financial Asset Management and Engineering.
    18. García Treviño, E.S. & Alarcón Aquino, V. & Barria, J.A., 2019. "The radial wavelet frame density estimator," Computational Statistics & Data Analysis, Elsevier, vol. 130(C), pages 111-139.
    19. Zeng, Xiaochen & Wang, Jinru, 2018. "Wavelet density deconvolution estimations with heteroscedastic measurement errors," Statistics & Probability Letters, Elsevier, vol. 134(C), pages 79-85.
    20. Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2011. "Inference on Treatment Effects After Selection Amongst High-Dimensional Controls," Papers 1201.0224, arXiv.org, revised May 2012.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:27:y:1996:i:1:p:71-84. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.