IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v216y2025ics0167715224002207.html
   My bibliography  Save this article

Block structure-based covariance tensor decomposition for group identification in matrix variables

Author

Listed:
  • Chen, Yu
  • Hu, Zongqing
  • Hu, Jie
  • Shu, Lei

Abstract

In research fields such as financial market analysis and social network research, understanding variable grouping relationships is fundamental to effective data analysis. This study describes the concept of the covariance tensor and emphasizes its significant role in analyzing matrix variable groupings through block structures. We propose a novel tensor decomposition-based method to exploit these structures for group identification. In addition, we explore the asymptotic properties of our estimators, focusing on the precision of the estimation of the number of groups and the asymptotic convergence of classification error rates to zero. We validate the effectiveness of the method through extensive numerical simulations across diverse data volumes and complexities, affirming its capability in variable grouping.

Suggested Citation

  • Chen, Yu & Hu, Zongqing & Hu, Jie & Shu, Lei, 2025. "Block structure-based covariance tensor decomposition for group identification in matrix variables," Statistics & Probability Letters, Elsevier, vol. 216(C).
  • Handle: RePEc:eee:stapro:v:216:y:2025:i:c:s0167715224002207
    DOI: 10.1016/j.spl.2024.110251
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715224002207
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2024.110251?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yiming Hu & Hongyu Zhao, 2016. "CCor: A whole genome network‐based similarity measure between two genes," Biometrics, The International Biometric Society, vol. 72(4), pages 1216-1225, December.
    2. Yujia Deng & Xiwei Tang & Annie Qu, 2023. "Correlation Tensor Decomposition and Its Application in Spatial Imaging Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 118(541), pages 440-456, January.
    3. Johnstone, Iain M. & Lu, Arthur Yu, 2009. "On Consistency and Sparsity for Principal Components Analysis in High Dimensions," Journal of the American Statistical Association, American Statistical Association, vol. 104(486), pages 682-693.
    4. David Disatnik & Saggi Katz, 2012. "Portfolio Optimization Using a Block Structure for the Covariance Matrix," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 39(5-6), pages 806-843, June.
    5. Ledyard Tucker, 1966. "Some mathematical notes on three-mode factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 31(3), pages 279-311, September.
    6. Yichi Zhang & Weining Shen & Dehan Kong, 2023. "Covariance Estimation for Matrix-valued Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 118(544), pages 2620-2631, October.
    7. Rungang Han & Yuetian Luo & Miaoyan Wang & Anru R. Zhang, 2022. "Exact clustering in tensor block model: Statistical optimality and computational limit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(5), pages 1666-1698, November.
    8. Weiping Zhang & Baisuo Jin & Zhidong Bai, 2021. "Learning block structures in U-statistic-based matrices [Consistency of AIC and BIC in estimating the number of significant components in high-dimensional principal component analysis]," Biometrika, Biometrika Trust, vol. 108(4), pages 933-946.
    9. Jie Zhou & Will Wei Sun & Jingfei Zhang & Lexin Li, 2023. "Partially Observed Dynamic Tensor Response Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 118(541), pages 424-439, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gong, Tingnan & Zhang, Weiping & Chen, Yu, 2023. "Uncovering block structures in large rectangular matrices," Journal of Multivariate Analysis, Elsevier, vol. 198(C).
    2. Mariela González-Narváez & María José Fernández-Gómez & Susana Mendes & José-Luis Molina & Omar Ruiz-Barzola & Purificación Galindo-Villardón, 2021. "Study of Temporal Variations in Species–Environment Association through an Innovative Multivariate Method: MixSTATICO," Sustainability, MDPI, vol. 13(11), pages 1-25, May.
    3. Candelon, B. & Hurlin, C. & Tokpavi, S., 2012. "Sampling error and double shrinkage estimation of minimum variance portfolios," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 511-527.
    4. Yuefeng Han & Rong Chen & Dan Yang & Cun-Hui Zhang, 2020. "Tensor Factor Model Estimation by Iterative Projection," Papers 2006.02611, arXiv.org, revised Jul 2024.
    5. Yata, Kazuyoshi & Aoshima, Makoto, 2013. "PCA consistency for the power spiked model in high-dimensional settings," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 334-354.
    6. Asai, Manabu & McAleer, Michael, 2015. "Forecasting co-volatilities via factor models with asymmetry and long memory in realized covariance," Journal of Econometrics, Elsevier, vol. 189(2), pages 251-262.
    7. Wang, Shao-Hsuan & Huang, Su-Yun, 2022. "Perturbation theory for cross data matrix-based PCA," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    8. Silin, Igor & Spokoiny, Vladimir, 2018. "Bayesian inference for spectral projectors of covariance matrix," IRTG 1792 Discussion Papers 2018-027, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    9. Lauren Stagnol, 2017. "Introducing global term structure in a risk parity framework," Working Papers hal-04141648, HAL.
    10. Elisa Frutos-Bernal & Ángel Martín del Rey & Irene Mariñas-Collado & María Teresa Santos-Martín, 2022. "An Analysis of Travel Patterns in Barcelona Metro Using Tucker3 Decomposition," Mathematics, MDPI, vol. 10(7), pages 1-17, March.
    11. Xinhai Liu & Wolfgang Glänzel & Bart De Moor, 2011. "Hybrid clustering of multi-view data via Tucker-2 model and its application," Scientometrics, Springer;Akadémiai Kiadó, vol. 88(3), pages 819-839, September.
    12. Barigozzi, Matteo & Trapani, Lorenzo, 2020. "Sequential testing for structural stability in approximate factor models," Stochastic Processes and their Applications, Elsevier, vol. 130(8), pages 5149-5187.
    13. Yoshio Takane & Forrest Young & Jan Leeuw, 1977. "Nonmetric individual differences multidimensional scaling: An alternating least squares method with optimal scaling features," Psychometrika, Springer;The Psychometric Society, vol. 42(1), pages 7-67, March.
    14. Dawn Iacobucci & Doug Grisaffe, 2018. "Perceptual maps via enhanced correspondence analysis: representing confidence regions to clarify brand positions," Journal of Marketing Analytics, Palgrave Macmillan, vol. 6(3), pages 72-83, September.
    15. D'Urso, Pierpaolo & Giordani, Paolo, 2003. "A least squares approach to Principal Component Analysis for interval valued data," Economics & Statistics Discussion Papers esdp03013, University of Molise, Department of Economics.
    16. Giovanni Cardillo & Paolo Giordani & Susanna Levantesi & Andrea Nigri, 2024. "A tensor-based approach to cause-of-death mortality modeling," Annals of Operations Research, Springer, vol. 342(3), pages 2075-2094, November.
    17. Maillet, Bertrand & Tokpavi, Sessi & Vaucher, Benoit, 2015. "Global minimum variance portfolio optimisation under some model risk: A robust regression-based approach," European Journal of Operational Research, Elsevier, vol. 244(1), pages 289-299.
    18. Steland, Ansgar, 2020. "Testing and estimating change-points in the covariance matrix of a high-dimensional time series," Journal of Multivariate Analysis, Elsevier, vol. 177(C).
    19. Giuseppe Brandi & Ruggero Gramatica & Tiziana Di Matteo, 2019. "Unveil stock correlation via a new tensor-based decomposition method," Papers 1911.06126, arXiv.org, revised Apr 2020.
    20. Lam, Clifford & Yao, Qiwei & Bathia, Neil, 2011. "Estimation of latent factors for high-dimensional time series," LSE Research Online Documents on Economics 31549, London School of Economics and Political Science, LSE Library.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:216:y:2025:i:c:s0167715224002207. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.