IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v208y2024ics0167715224000294.html
   My bibliography  Save this article

A generalization bound of deep neural networks for dependent data

Author

Listed:
  • Do, Quan Huu
  • Nguyen, Binh T.
  • Ho, Lam Si Tung

Abstract

Existing generalization bounds for deep neural networks require data to be independent and identically distributed (iid). This assumption may not hold in real-life applications such as evolutionary biology, infectious disease epidemiology, and stock price prediction. This work establishes a generalization bound of feed-forward neural networks for non-stationary φ-mixing data.

Suggested Citation

  • Do, Quan Huu & Nguyen, Binh T. & Ho, Lam Si Tung, 2024. "A generalization bound of deep neural networks for dependent data," Statistics & Probability Letters, Elsevier, vol. 208(C).
  • Handle: RePEc:eee:stapro:v:208:y:2024:i:c:s0167715224000294
    DOI: 10.1016/j.spl.2024.110060
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715224000294
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2024.110060?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Truquet, Lionel, 2023. "Strong mixing properties of discrete-valued time series with exogenous covariates," Stochastic Processes and their Applications, Elsevier, vol. 160(C), pages 294-317.
    2. James B. Heaton & Nicholas Polson & Jan H. Witte, 2017. "Rejoinder to ‘Deep learning for finance: deep portfolios’," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 33(1), pages 19-21, January.
    3. Ho, Lam Si Tung & Dinh, Vu, 2022. "Searching for minimal optimal neural networks," Statistics & Probability Letters, Elsevier, vol. 183(C).
    4. White, Halbert & Domowitz, Ian, 1984. "Nonlinear Regression with Dependent Observations," Econometrica, Econometric Society, vol. 52(1), pages 143-161, January.
    5. J. B. Heaton & N. G. Polson & J. H. Witte, 2017. "Deep learning for finance: deep portfolios," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 33(1), pages 3-12, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moews, Ben & Ibikunle, Gbenga, 2020. "Predictive intraday correlations in stable and volatile market environments: Evidence from deep learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    2. Doron Avramov & Si Cheng & Lior Metzker, 2023. "Machine Learning vs. Economic Restrictions: Evidence from Stock Return Predictability," Management Science, INFORMS, vol. 69(5), pages 2587-2619, May.
    3. Jiang, Kangqi & Du, Xinyi & Chen, Zhongfei, 2022. "Firms' digitalization and stock price crash risk," International Review of Financial Analysis, Elsevier, vol. 82(C).
    4. Zhengyong Jiang & Jeyan Thiayagalingam & Jionglong Su & Jinjun Liang, 2023. "CAD: Clustering And Deep Reinforcement Learning Based Multi-Period Portfolio Management Strategy," Papers 2310.01319, arXiv.org.
    5. Uddin, Ajim & Yu, Dantong, 2020. "Latent factor model for asset pricing," Journal of Behavioral and Experimental Finance, Elsevier, vol. 27(C).
    6. Axelsson, Birger & Song, Han-Suck, 2023. "Univariate Forecasting for REITs with Deep Learning: A Comparative Analysis with an ARIMA Model," Working Paper Series 23/10, Royal Institute of Technology, Department of Real Estate and Construction Management & Banking and Finance, revised 14 Nov 2023.
    7. Landry Frank Ineza Havugimana & Bolan Liu & Fanshuo Liu & Junwei Zhang & Ben Li & Peng Wan, 2023. "Review of Artificial Intelligent Algorithms for Engine Performance, Control, and Diagnosis," Energies, MDPI, vol. 16(3), pages 1-25, January.
    8. Huh, Jeonggyu, 2020. "Measuring systematic risk with neural network factor model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    9. Sang Il Lee & Seong Joon Yoo, 2019. "Multimodal Deep Learning for Finance: Integrating and Forecasting International Stock Markets," Papers 1903.06478, arXiv.org, revised Sep 2019.
    10. Chengyu Liu & Yan Li & Mingjie Fang & Feng Liu, 2023. "Using machine learning to explore the determinants of service satisfaction with online healthcare platforms during the COVID-19 pandemic," Service Business, Springer;Pan-Pacific Business Association, vol. 17(2), pages 449-476, June.
    11. Kolesnikova, A. & Yang, Y. & Lessmann, S. & Ma, T. & Sung, M.-C. & Johnson, J.E.V., 2019. "Can Deep Learning Predict Risky Retail Investors? A Case Study in Financial Risk Behavior Forecasting," IRTG 1792 Discussion Papers 2019-023, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    12. Caldeira, João F. & Santos, André A.P. & Torrent, Hudson S., 2023. "Semiparametric portfolios: Improving portfolio performance by exploiting non-linearities in firm characteristics," Economic Modelling, Elsevier, vol. 122(C).
    13. Li, Weiping & Mei, Feng, 2020. "Asset returns in deep learning methods: An empirical analysis on SSE 50 and CSI 300," Research in International Business and Finance, Elsevier, vol. 54(C).
    14. Eric Benhamou & David Saltiel & Serge Tabachnik & Sui Kai Wong & François Chareyron, 2021. "Distinguish the indistinguishable: a Deep Reinforcement Learning approach for volatility targeting models," Working Papers hal-03202431, HAL.
    15. Weijia Peng & Chun Yao, 2023. "Sector-level equity returns predictability with machine learning and market contagion measure," Empirical Economics, Springer, vol. 65(4), pages 1761-1798, October.
    16. Hauzenberger, Niko & Huber, Florian & Klieber, Karin, 2023. "Real-time inflation forecasting using non-linear dimension reduction techniques," International Journal of Forecasting, Elsevier, vol. 39(2), pages 901-921.
    17. Mirza, Nawazish & Rizvi, Syed Kumail Abbas & Naqvi, Bushra & Umar, Muhammad, 2024. "Inflation prediction in emerging economies: Machine learning and FX reserves integration for enhanced forecasting," International Review of Financial Analysis, Elsevier, vol. 94(C).
    18. Yao, Haixiang & Xia, Shenghao & Liu, Hao, 2022. "Six-factor asset pricing and portfolio investment via deep learning: Evidence from Chinese stock market," Pacific-Basin Finance Journal, Elsevier, vol. 76(C).
    19. James Yae & Yang Luo, 2023. "Robust monitoring machine: a machine learning solution for out-of-sample R $$^2$$ 2 -hacking in return predictability monitoring," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-28, December.
    20. Kim, Alisa & Trimborn, Simon & Härdle, Wolfgang Karl, 2021. "VCRIX — A volatility index for crypto-currencies," International Review of Financial Analysis, Elsevier, vol. 78(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:208:y:2024:i:c:s0167715224000294. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.