IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v117y2022i538p852-861.html
   My bibliography  Save this article

Estimating Number of Factors by Adjusted Eigenvalues Thresholding

Author

Listed:
  • Jianqing Fan
  • Jianhua Guo
  • Shurong Zheng

Abstract

Determining the number of common factors is an important and practical topic in high-dimensional factor models. The existing literature is mainly based on the eigenvalues of the covariance matrix. Owing to the incomparability of the eigenvalues of the covariance matrix caused by the heterogeneous scales of the observed variables, it is not easy to find an accurate relationship between these eigenvalues and the number of common factors. To overcome this limitation, we appeal to the correlation matrix and demonstrate, surprisingly, that the number of eigenvalues greater than 1 of the population correlation matrix is the same as the number of common factors under certain mild conditions. To use such a relationship, we study random matrix theory based on the sample correlation matrix to correct biases in estimating the top eigenvalues and to take into account of estimation errors in eigenvalue estimation. Thus, we propose a tuning-free scale-invariant adjusted correlation thresholding (ACT) method for determining the number of common factors in high-dimensional factor models, taking into account the sampling variabilities and biases of top sample eigenvalues. We also establish the optimality of the proposed ACT method in terms of minimal signal strength and the optimal threshold. Simulation studies lend further support to our proposed method and show that our estimator outperforms competing methods in most test cases. Supplementary materials for this article are available online.

Suggested Citation

  • Jianqing Fan & Jianhua Guo & Shurong Zheng, 2022. "Estimating Number of Factors by Adjusted Eigenvalues Thresholding," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(538), pages 852-861, April.
  • Handle: RePEc:taf:jnlasa:v:117:y:2022:i:538:p:852-861
    DOI: 10.1080/01621459.2020.1825448
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2020.1825448
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2020.1825448?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Yunlin & Huang, Lei & Jiang, Hui, 2023. "Optimization of large portfolio allocation for new-energy stocks: Evidence from China," Energy, Elsevier, vol. 285(C).
    2. Li, Yan & Gao, Zhigen & Huang, Wei & Guo, Jianhua, 2023. "Matrix-variate data analysis by two-way factor model with replicated observations," Statistics & Probability Letters, Elsevier, vol. 202(C).
    3. Bo Zhang & Jiti Gao & Guangming Pan & Yanrong Yang, 2023. "Eigen-Analysis for High-Dimensional Time Series Clustering," Monash Econometrics and Business Statistics Working Papers 22/23, Monash University, Department of Econometrics and Business Statistics.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:117:y:2022:i:538:p:852-861. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.