IDEAS home Printed from https://ideas.repec.org/a/taf/jnlbes/v40y2022i1p302-312.html
   My bibliography  Save this article

Large-Dimensional Factor Analysis Without Moment Constraints

Author

Listed:
  • Yong He
  • Xinbing Kong
  • Long Yu
  • Xinsheng Zhang

Abstract

Large-dimensional factor model has drawn much attention in the big-data era, to reduce the dimensionality and extract underlying features using a few latent common factors. Conventional methods for estimating the factor model typically requires finite fourth moment of the data, which ignores the effect of heavy-tailedness and thus may result in unrobust or even inconsistent estimation of the factor space and common components. In this article, we propose to recover the factor space by performing principal component analysis to the spatial Kendall’s tau matrix instead of the sample covariance matrix. In a second step, we estimate the factor scores by the ordinary least square regression. Theoretically, we show that under the elliptical distribution framework the factor loadings and scores as well as the common components can be estimated consistently without any moment constraint. The convergence rates of the estimated factor loadings, scores, and common components are provided. The finite sample performance of the proposed procedure is assessed through thorough simulations. An analysis of a financial dataset of asset returns shows the superiority of the proposed method over the classical principle component analysis method.

Suggested Citation

  • Yong He & Xinbing Kong & Long Yu & Xinsheng Zhang, 2022. "Large-Dimensional Factor Analysis Without Moment Constraints," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 302-312, January.
  • Handle: RePEc:taf:jnlbes:v:40:y:2022:i:1:p:302-312
    DOI: 10.1080/07350015.2020.1811101
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07350015.2020.1811101
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07350015.2020.1811101?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiao Huang, 2023. "Composite Quantile Factor Models," Papers 2308.02450, arXiv.org.
    2. Xin-Bing Kong & Yong-Xin Liu & Long Yu & Peng Zhao, 2022. "Matrix Quantile Factor Model," Papers 2208.08693, arXiv.org, revised Aug 2024.
    3. Li, Yan & Gao, Zhigen & Huang, Wei & Guo, Jianhua, 2023. "Matrix-variate data analysis by two-way factor model with replicated observations," Statistics & Probability Letters, Elsevier, vol. 202(C).
    4. Matteo Barigozzi & Marc Hallin, 2023. "Dynamic Factor Models: a Genealogy," Working Papers ECARES 2023-15, ULB -- Universite Libre de Bruxelles.
    5. Xiuli Du & Xiaohu Jiang & Jinguan Lin, 2023. "Multinomial Logistic Factor Regression for Multi-source Functional Block-wise Missing Data," Psychometrika, Springer;The Psychometric Society, vol. 88(3), pages 975-1001, September.
    6. Djogbenou, Antoine & Sufana, Razvan, 2024. "Tests for group-specific heterogeneity in high-dimensional factor models," Journal of Multivariate Analysis, Elsevier, vol. 199(C).
    7. Zhao, Yan-Yong & Zhang, Yuchun & Liu, Yuan & Ismail, Noriszura, 2024. "Distributed debiased estimation of high-dimensional partially linear models with jumps," Computational Statistics & Data Analysis, Elsevier, vol. 191(C).
    8. Yang, Shuquan & Ling, Nengxiang, 2023. "Robust projected principal component analysis for large-dimensional semiparametric factor modeling," Journal of Multivariate Analysis, Elsevier, vol. 195(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlbes:v:40:y:2022:i:1:p:302-312. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UBES20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.