IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v184y2022ics0167715222000116.html
   My bibliography  Save this article

Double-barrier option pricing equations under extended geometric Brownian motion with bankruptcy risk

Author

Listed:
  • Hsu, Yu-Sheng
  • Chen, Pei-Chun
  • Wu, Cheng-Hsun

Abstract

We consider an extended geometric Brownian motion with bankruptcy risk and solve its double barrier option pricing problem. We establish its partial differential equation and provide its numerical solution. Then we discuss the influence of bankruptcy omission by simulation.

Suggested Citation

  • Hsu, Yu-Sheng & Chen, Pei-Chun & Wu, Cheng-Hsun, 2022. "Double-barrier option pricing equations under extended geometric Brownian motion with bankruptcy risk," Statistics & Probability Letters, Elsevier, vol. 184(C).
  • Handle: RePEc:eee:stapro:v:184:y:2022:i:c:s0167715222000116
    DOI: 10.1016/j.spl.2022.109383
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715222000116
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2022.109383?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    2. Goldman, M Barry & Sosin, Howard B & Gatto, Mary Ann, 1979. "Path Dependent Options: "Buy at the Low, Sell at the High"," Journal of Finance, American Finance Association, vol. 34(5), pages 1111-1127, December.
    3. Naoto Kunitomo & Masayuki Ikeda, 1992. "Pricing Options With Curved Boundaries1," Mathematical Finance, Wiley Blackwell, vol. 2(4), pages 275-298, October.
    4. Hélyette Geman & Marc Yor, 1996. "Pricing And Hedging Double‐Barrier Options: A Probabilistic Approach," Mathematical Finance, Wiley Blackwell, vol. 6(4), pages 365-378, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antoon Pelsser, "undated". "Pricing Double Barrier Options: An Analytical Approach," Computing in Economics and Finance 1997 130, Society for Computational Economics.
    2. Wang, Heqian & Zhang, Jiayi & Zhou, Ke, 2022. "On pricing of vulnerable barrier options and vulnerable double barrier options," Finance Research Letters, Elsevier, vol. 44(C).
    3. Jun, Doobae & Ku, Hyejin, 2015. "Static hedging of chained-type barrier options," The North American Journal of Economics and Finance, Elsevier, vol. 33(C), pages 317-327.
    4. Peter Buchen & Otto Konstandatos, 2009. "A New Approach to Pricing Double-Barrier Options with Arbitrary Payoffs and Exponential Boundaries," Applied Mathematical Finance, Taylor & Francis Journals, vol. 16(6), pages 497-515.
    5. repec:dau:papers:123456789/5374 is not listed on IDEAS
    6. Zhang, Jiayi & Zhou, Ke, 2024. "Analytical valuation of vulnerable chained options," The North American Journal of Economics and Finance, Elsevier, vol. 70(C).
    7. Doobae Jun & Hyejin Ku, 2013. "Valuation of American partial barrier options," Review of Derivatives Research, Springer, vol. 16(2), pages 167-191, July.
    8. Youngchul Han & Geonwoo Kim, 2016. "Efficient Lattice Method for Valuing of Options with Barrier in a Regime Switching Model," Discrete Dynamics in Nature and Society, Hindawi, vol. 2016, pages 1-14, October.
    9. Dmitry Davydov & Vadim Linetsky, 2003. "Pricing Options on Scalar Diffusions: An Eigenfunction Expansion Approach," Operations Research, INFORMS, vol. 51(2), pages 185-209, April.
    10. Zhang, Xiaoyuan & Zhang, Tianqi, 2023. "On pricing double-barrier options with Markov regime switching," Finance Research Letters, Elsevier, vol. 51(C).
    11. Jos� Carlos Dias & João Pedro Vidal Nunes & João Pedro Ruas, 2015. "Pricing and static hedging of European-style double barrier options under the jump to default extended CEV model," Quantitative Finance, Taylor & Francis Journals, vol. 15(12), pages 1995-2010, December.
    12. U Hou Lok & Yuh‐Dauh Lyuu, 2020. "Efficient trinomial trees for local‐volatility models in pricing double‐barrier options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(4), pages 556-574, April.
    13. Marianito R. Rodrigo, 2020. "Pricing of Barrier Options on Underlying Assets with Jump-Diffusion Dynamics: A Mellin Transform Approach," Mathematics, MDPI, vol. 8(8), pages 1-20, August.
    14. Lee, Hangsuck & Kim, Eunchae & Ko, Bangwon, 2022. "Valuing lookback options with barrier," The North American Journal of Economics and Finance, Elsevier, vol. 60(C).
    15. Choe, Geon Ho & Koo, Ki Hwan, 2014. "Probability of multiple crossings and pricing of double barrier options," The North American Journal of Economics and Finance, Elsevier, vol. 29(C), pages 156-184.
    16. Zvan, R. & Vetzal, K. R. & Forsyth, P. A., 2000. "PDE methods for pricing barrier options," Journal of Economic Dynamics and Control, Elsevier, vol. 24(11-12), pages 1563-1590, October.
    17. Rahman Farnoosh & Hamidreza Rezazadeh & Amirhossein Sobhani & M. Hossein Beheshti, 2016. "A Numerical Method for Discrete Single Barrier Option Pricing with Time-Dependent Parameters," Computational Economics, Springer;Society for Computational Economics, vol. 48(1), pages 131-145, June.
    18. Andrew Ming-Long Wang & Yu-Hong Liu & Yi-Long Hsiao, 2009. "Barrier option pricing: a hybrid method approach," Quantitative Finance, Taylor & Francis Journals, vol. 9(3), pages 341-352.
    19. Jérôme Detemple, 1999. "American Options: Symmetry Properties," CIRANO Working Papers 99s-45, CIRANO.
    20. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    21. Marcos Escobar-Anel & Matt Davison & Yichen Zhu, 2022. "Derivatives-based portfolio decisions: an expected utility insight," Annals of Finance, Springer, vol. 18(2), pages 217-246, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:184:y:2022:i:c:s0167715222000116. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.