IDEAS home Printed from https://ideas.repec.org/p/cir/cirwor/99s-45.html
   My bibliography  Save this paper

American Options: Symmetry Properties

Author

Listed:
  • Jérôme Detemple

Abstract

A useful feature of European and American options in the standard financial market model with constant coefficients is the property of put-call symmetry. This property states that the value of a put option with strike price K and maturity date T is the same as the value of a call option with strike price S, maturity date T in an auxiliary financial market with interest rate d and in which the underlying asset price pays dividends at the rate r and has initial value K. In this paper we review recent generalizations of this property and provide complementary results. We show taht put-call symmetry is a general property which holds in a large class of financial market models including nonmarkovian models with stochastic coefficients. The property extends naturally to nonstandard American claims such as (i) options with random maturity which include barrier options and capped options, (ii) multiasset derivatives, (iii) occupation time derivatives and (iv) claims whose payoffs are homogeneous of degree v is different from 1. Changes of numeraire which are instrumental in establishing symmetry properties are also reviewed and discussed. Une propriété utile des options européennes et américaines, dans le cadre du modèle standard de Black-Scholes, est la symétrie. Celle-ci énonce que la valeur d'une option d'achat au prix d'exercice K et à date d'échéance T est identique à la valeur d'une option de vente au prix d'exercice S, date d'échéance T dans un marché financier auxiliaire où le taux d'intérêt est d et où le titre support paye des dividendes au taux r et est valorisé à K. Cet article fait une synthèse des généralisations récentes de cette propriété et établit certains résultats complémentaires. La validité de la propriété de symétrie est établie pour une classe générale de modèles des marchés financiers qui comprend des spécifications nonmarkoviennes à coefficients stochastiques du sous-jacent. En effet, la symétrie se généralise de manière naturelle aux actifs contingents nonstandards de style américain, tels que (i) les options à échéance aléatoires (options à barrières et options plafonnées), (ii) les produits dérivés sur titres supports multiples, (iii) les produits dérivés sur temps d'occupation et (iv) les titres dont les valeurs d'échéance sont homogènes de degré v est différent de 1. La méthode de changement de numéraire, qui est essentielle pour la démonstration de ces résultats, est également passée en revue.

Suggested Citation

  • Jérôme Detemple, 1999. "American Options: Symmetry Properties," CIRANO Working Papers 99s-45, CIRANO.
  • Handle: RePEc:cir:cirwor:99s-45
    as

    Download full text from publisher

    File URL: https://cirano.qc.ca/files/publications/99s-45.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marcel Dagenais & Claude Montmarquette & Daniel Parent & Nathalie Viennot-Briot, 1999. "Travail pendant les études, performance scolaire et abandon," CIRANO Working Papers 99s-41, CIRANO.
    2. Orlin Grabbe, J., 1983. "The pricing of call and put options on foreign exchange," Journal of International Money and Finance, Elsevier, vol. 2(3), pages 239-253, December.
    3. Gao, Bin & Huang, Jing-zhi & Subrahmanyam, Marti, 2000. "The valuation of American barrier options using the decomposition technique," Journal of Economic Dynamics and Control, Elsevier, vol. 24(11-12), pages 1783-1827, October.
    4. Schroder, Mark, 1999. "Changes of Numeraire for Pricing Futures, Forwards, and Options," The Review of Financial Studies, Society for Financial Studies, vol. 12(5), pages 1143-1163.
    5. Goldman, M Barry & Sosin, Howard B & Gatto, Mary Ann, 1979. "Path Dependent Options: "Buy at the Low, Sell at the High"," Journal of Finance, American Finance Association, vol. 34(5), pages 1111-1127, December.
    6. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    7. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    8. Peter Carr & Robert Jarrow & Ravi Myneni, 2008. "Alternative Characterizations Of American Put Options," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 5, pages 85-103, World Scientific Publishing Co. Pte. Ltd..
    9. Orlin J. Grabbe, "undated". "The Pricing of Call and Put Options on Foreign Exchange," Rodney L. White Center for Financial Research Working Papers 06-83, Wharton School Rodney L. White Center for Financial Research.
    10. Broadie, Mark & Detemple, Jerome, 1995. "American Capped Call Options on Dividend-Paying Assets," The Review of Financial Studies, Society for Financial Studies, vol. 8(1), pages 161-191.
    11. Margrabe, William, 1978. "The Value of an Option to Exchange One Asset for Another," Journal of Finance, American Finance Association, vol. 33(1), pages 177-186, March.
    12. Marcel Boyer, 1999. "Les Expos, l'OSM, les universités, les hôpitaux : Le coût d'un déficit de 400 000 emplois au Québec = Expos, Montreal Symphony Orchestra, Universities, Hospitals: The Cost of a 400,000-Job Shortfall i," CIRANO Papers 99c-01, CIRANO.
    13. Mark Broadie & Jérôme Detemple, 1997. "The Valuation of American Options on Multiple Assets," Mathematical Finance, Wiley Blackwell, vol. 7(3), pages 241-286, July.
    14. S. D. Jacka, 1991. "Optimal Stopping and the American Put," Mathematical Finance, Wiley Blackwell, vol. 1(2), pages 1-14, April.
    15. Orlin J. Grabbe, "undated". "The Pricing of Call and Put Options on Foreign Exchange," Rodney L. White Center for Financial Research Working Papers 6-83, Wharton School Rodney L. White Center for Financial Research.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shuxin Guo & Qiang Liu, 2019. "The Black-Scholes-Merton dual equation," Papers 1912.10380, arXiv.org, revised May 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    2. Mark Broadie & Jérôme Detemple, 1996. "American Options on Dividend-Paying Assets," CIRANO Working Papers 96s-16, CIRANO.
    3. Sanjay K. Nawalkha & Xiaoyang Zhuo, 2022. "A Theory of Equivalent Expectation Measures for Contingent Claim Returns," Journal of Finance, American Finance Association, vol. 77(5), pages 2853-2906, October.
    4. Vidal Nunes, João Pedro & Ruas, João Pedro & Dias, José Carlos, 2020. "Early exercise boundaries for American-style knock-out options," European Journal of Operational Research, Elsevier, vol. 285(2), pages 753-766.
    5. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    6. Martzoukos, Spiros H., 2001. "The option on n assets with exchange rate and exercise price risk," Journal of Multinational Financial Management, Elsevier, vol. 11(1), pages 1-15, February.
    7. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    8. David S. Bates, 1995. "Testing Option Pricing Models," NBER Working Papers 5129, National Bureau of Economic Research, Inc.
    9. Jun Cheng & Jin Zhang, 2012. "Analytical pricing of American options," Review of Derivatives Research, Springer, vol. 15(2), pages 157-192, July.
    10. Shuxin Guo & Qiang Liu, 2019. "The Black-Scholes-Merton dual equation," Papers 1912.10380, arXiv.org, revised May 2024.
    11. Mark Broadie & Jérôme Detemple, 1996. "Recent Advances in Numerical Methods for Pricing Derivative Securities," CIRANO Working Papers 96s-17, CIRANO.
    12. B. Gao J. Huang, "undated". "The Valuation of American Barrier Options Using the Decomposition Technique," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-002, New York University, Leonard N. Stern School of Business-.
    13. Blenman, Lloyd P. & Ayadi, O. Felix, 1997. "Cross currency option pricing," Global Finance Journal, Elsevier, vol. 8(1), pages 159-166.
    14. Muthuraman, Kumar, 2008. "A moving boundary approach to American option pricing," Journal of Economic Dynamics and Control, Elsevier, vol. 32(11), pages 3520-3537, November.
    15. JosE Fajardo & Ernesto Mordecki, 2006. "Symmetry and duality in Levy markets," Quantitative Finance, Taylor & Francis Journals, vol. 6(3), pages 219-227.
    16. Rojas-Bernal, Alejandro & Villamizar-Villegas, Mauricio, 2021. "Pricing the exotic: Path-dependent American options with stochastic barriers," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 2(1).
    17. Gao, Bin & Huang, Jing-zhi & Subrahmanyam, Marti, 2000. "The valuation of American barrier options using the decomposition technique," Journal of Economic Dynamics and Control, Elsevier, vol. 24(11-12), pages 1783-1827, October.
    18. Weihan Li & Jin E. Zhang & Xinfeng Ruan & Pakorn Aschakulporn, 2024. "An empirical study on the early exercise premium of American options: Evidence from OEX and XEO options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(7), pages 1117-1153, July.
    19. Marcos Escobar & Christoph Gschnaidtner, 2018. "A multivariate stochastic volatility model with applications in the foreign exchange market," Review of Derivatives Research, Springer, vol. 21(1), pages 1-43, April.
    20. Akihiko Takahashi & Kohta Takehara, 2009. "Asymptotic Expansion Approaches in Finance: Applications to Currency Options," CARF F-Series CARF-F-165, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cir:cirwor:99s-45. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Webmaster (email available below). General contact details of provider: https://edirc.repec.org/data/ciranca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.