IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v151y2019icp79-83.html
   My bibliography  Save this article

Jensen inequality for superlinear expectations

Author

Listed:
  • Lin, Qian

Abstract

In this note, we investigate Jensen inequality for superlinear expectations and its application in economics. Superlinear expectations are defined via G-expectations.

Suggested Citation

  • Lin, Qian, 2019. "Jensen inequality for superlinear expectations," Statistics & Probability Letters, Elsevier, vol. 151(C), pages 79-83.
  • Handle: RePEc:eee:stapro:v:151:y:2019:i:c:p:79-83
    DOI: 10.1016/j.spl.2019.03.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715219300823
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2019.03.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Larry G. Epstein & Shaolin Ji, 2013. "Ambiguous Volatility and Asset Pricing in Continuous Time," The Review of Financial Studies, Society for Financial Studies, vol. 26(7), pages 1740-1786.
    2. Karandikar, Rajeeva L., 1995. "On pathwise stochastic integration," Stochastic Processes and their Applications, Elsevier, vol. 57(1), pages 11-18, May.
    3. Peng, Shige, 2008. "Multi-dimensional G-Brownian motion and related stochastic calculus under G-expectation," Stochastic Processes and their Applications, Elsevier, vol. 118(12), pages 2223-2253, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Asfand Fahad & Saad Ihsaan Butt & Josip Pečarić & Marjan Praljak, 2023. "Generalized Taylor’s Formula and Steffensen’s Inequality," Mathematics, MDPI, vol. 11(16), pages 1-8, August.
    2. Shanhe Wu & Muhammad Adil Khan & Tareq Saeed & Zaid Mohammed Mohammed Mahdi Sayed, 2022. "A Refined Jensen Inequality Connected to an Arbitrary Positive Finite Sequence," Mathematics, MDPI, vol. 10(24), pages 1-10, December.
    3. Hidayat Ullah & Muhammad Adil Khan & Tareq Saeed, 2021. "Determination of Bounds for the Jensen Gap and Its Applications," Mathematics, MDPI, vol. 9(23), pages 1-29, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Epstein, Larry G. & Ji, Shaolin, 2014. "Ambiguous volatility, possibility and utility in continuous time," Journal of Mathematical Economics, Elsevier, vol. 50(C), pages 269-282.
    2. Nutz, Marcel, 2015. "Robust superhedging with jumps and diffusion," Stochastic Processes and their Applications, Elsevier, vol. 125(12), pages 4543-4555.
    3. Beißner, Patrick, 2013. "Coherent Price Systems and Uncertainty-Neutral Valuation," VfS Annual Conference 2013 (Duesseldorf): Competition Policy and Regulation in a Global Economic Order 80010, Verein für Socialpolitik / German Economic Association.
    4. Larry G. Epstein & Shaolin Ji, 2013. "Ambiguous Volatility and Asset Pricing in Continuous Time," The Review of Financial Studies, Society for Financial Studies, vol. 26(7), pages 1740-1786.
    5. Falei Wang & Guoqiang Zheng, 2021. "Backward Stochastic Differential Equations Driven by G-Brownian Motion with Uniformly Continuous Generators," Journal of Theoretical Probability, Springer, vol. 34(2), pages 660-681, June.
    6. Amine Ismail & Huy^en Pham, 2016. "Robust Markowitz mean-variance portfolio selection under ambiguous covariance matrix ," Papers 1610.06805, arXiv.org, revised Mar 2017.
    7. Cheng, Bingqian & Wang, Hao & Zhang, Lihong, 2024. "Robust investment for insurers with correlation ambiguity," The Quarterly Review of Economics and Finance, Elsevier, vol. 93(C), pages 247-257.
    8. Thibaut Mastrolia & Dylan Possamai, 2015. "Moral hazard under ambiguity," Papers 1511.03616, arXiv.org, revised Oct 2016.
    9. Shige Peng & Huilin Zhang, 2022. "Wong–Zakai Approximation for Stochastic Differential Equations Driven by G-Brownian Motion," Journal of Theoretical Probability, Springer, vol. 35(1), pages 410-425, March.
    10. Xu, Yuhong, 2022. "Optimal growth under model uncertainty," The North American Journal of Economics and Finance, Elsevier, vol. 60(C).
    11. Qian Lin, 2015. "Dynamic indifference pricing via the G-expectation," Papers 1503.08628, arXiv.org, revised Sep 2020.
    12. Hu, Mingshang & Ji, Shaolin, 2017. "Dynamic programming principle for stochastic recursive optimal control problem driven by a G-Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 127(1), pages 107-134.
    13. Changhong Guo & Shaomei Fang & Yong He, 2023. "A Generalized Stochastic Process: Fractional G-Brownian Motion," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-34, March.
    14. Marcel Nutz, 2014. "Robust Superhedging with Jumps and Diffusion," Papers 1407.1674, arXiv.org, revised Jul 2015.
    15. Drapeau, Samuel & Heyne, Gregor & Kupper, Michael, 2015. "Minimal supersolutions of BSDEs under volatility uncertainty," Stochastic Processes and their Applications, Elsevier, vol. 125(8), pages 2895-2909.
    16. Nendel, Max & Röckner, Michael, 2019. "Upper Envelopes of Families of Feller Semigroups and Viscosity Solutions to a Class of Nonlinear Cauchy Problems," Center for Mathematical Economics Working Papers 618, Center for Mathematical Economics, Bielefeld University.
    17. Changhong Guo & Shaomei Fang & Yong He, 2023. "Derivation and Application of Some Fractional Black–Scholes Equations Driven by Fractional G-Brownian Motion," Computational Economics, Springer;Society for Computational Economics, vol. 61(4), pages 1681-1705, April.
    18. Marcel Nutz & H. Mete Soner, 2010. "Superhedging and Dynamic Risk Measures under Volatility Uncertainty," Papers 1011.2958, arXiv.org, revised Jun 2012.
    19. Li, Xinpeng & Peng, Shige, 2011. "Stopping times and related Itô's calculus with G-Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 121(7), pages 1492-1508, July.
    20. Thibaut Mastrolia & Dylan Possamaï, 2018. "Moral Hazard Under Ambiguity," Journal of Optimization Theory and Applications, Springer, vol. 179(2), pages 452-500, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:151:y:2019:i:c:p:79-83. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.