IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v25y2023i1d10.1007_s11009-023-10010-9.html
   My bibliography  Save this article

A Generalized Stochastic Process: Fractional G-Brownian Motion

Author

Listed:
  • Changhong Guo

    (Guangdong University of Technology)

  • Shaomei Fang

    (South China Agricultural University)

  • Yong He

    (Guangdong University of Technology)

Abstract

In this paper, a new concept for some stochastic process called fractional G-Brownian motion (fGBm) is developed. The fGBm can exhibit long-range dependence and consider volatility uncertainty simultaneously, compared to the standard Brownian motion, fractional Brownian motion and G-Brownian motion. Thus it generalizes the concepts of the latter three processes, and can be a better alternative stochastic process in real applications. The existence, representation and some intrinsic properties for the fGBm are discussed, and some partial differential equations related to fGBm are also present. Finally, some numerical simulations for the distributions of G-normally distributed random variable and sample paths of fGBm are carried out, which shows that fGBm can be better to describe the amplitudes of the randomness.

Suggested Citation

  • Changhong Guo & Shaomei Fang & Yong He, 2023. "A Generalized Stochastic Process: Fractional G-Brownian Motion," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-34, March.
  • Handle: RePEc:spr:metcap:v:25:y:2023:i:1:d:10.1007_s11009-023-10010-9
    DOI: 10.1007/s11009-023-10010-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-023-10010-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-023-10010-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Larry G. Epstein & Shaolin Ji, 2013. "Ambiguous Volatility and Asset Pricing in Continuous Time," The Review of Financial Studies, Society for Financial Studies, vol. 26(7), pages 1740-1786.
    2. Andrew W. Lo, A. Craig MacKinlay, 1988. "Stock Market Prices do not Follow Random Walks: Evidence from a Simple Specification Test," The Review of Financial Studies, Society for Financial Studies, vol. 1(1), pages 41-66.
    3. Johannes Muhle-Karbe & Marcel Nutz, 2016. "A Risk-Neutral Equilibrium Leading to Uncertain Volatility Pricing," Papers 1612.09152, arXiv.org, revised Jan 2018.
    4. Robert J. Elliott & John Van Der Hoek, 2003. "A General Fractional White Noise Theory And Applications To Finance," Mathematical Finance, Wiley Blackwell, vol. 13(2), pages 301-330, April.
    5. Wei Chen, 2013. "Fractional G-White Noise Theory, Wavelet Decomposition for Fractional G-Brownian Motion, and Bid-Ask Pricing Application to Finance Under Uncertainty," Papers 1306.4070, arXiv.org.
    6. Zengjing Chen & Larry Epstein, 2002. "Ambiguity, Risk, and Asset Returns in Continuous Time," Econometrica, Econometric Society, vol. 70(4), pages 1403-1443, July.
    7. Tolulope Fadina & Ariel Neufeld & Thorsten Schmidt, 2018. "Affine processes under parameter uncertainty," Papers 1806.02912, arXiv.org, revised Mar 2019.
    8. Tommi Sottinen, 2001. "Fractional Brownian motion, random walks and binary market models," Finance and Stochastics, Springer, vol. 5(3), pages 343-355.
    9. Vorbrink, Jörg, 2014. "Financial markets with volatility uncertainty," Journal of Mathematical Economics, Elsevier, vol. 53(C), pages 64-78.
    10. Peng, Shige, 2008. "Multi-dimensional G-Brownian motion and related stochastic calculus under G-expectation," Stochastic Processes and their Applications, Elsevier, vol. 118(12), pages 2223-2253, December.
    11. Tomas Björk & Henrik Hult, 2005. "A note on Wick products and the fractional Black-Scholes model," Finance and Stochastics, Springer, vol. 9(2), pages 197-209, April.
    12. L. C. G. Rogers, 1997. "Arbitrage with Fractional Brownian Motion," Mathematical Finance, Wiley Blackwell, vol. 7(1), pages 95-105, January.
    13. Denk, Robert & Kupper, Michael & Nendel, Max, 2020. "A semigroup approach to nonlinear Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 130(3), pages 1616-1642.
    14. T. J. Lyons, 1995. "Uncertain volatility and the risk-free synthesis of derivatives," Applied Mathematical Finance, Taylor & Francis Journals, vol. 2(2), pages 117-133.
    15. Johannes Muhle-Karbe & Marcel Nutz, 2018. "A risk-neutral equilibrium leading to uncertain volatility pricing," Finance and Stochastics, Springer, vol. 22(2), pages 281-295, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Changhong Guo & Shaomei Fang & Yong He, 2023. "Derivation and Application of Some Fractional Black–Scholes Equations Driven by Fractional G-Brownian Motion," Computational Economics, Springer;Society for Computational Economics, vol. 61(4), pages 1681-1705, April.
    2. Stoyan V. Stoyanov & Yong Shin Kim & Svetlozar T. Rachev & Frank J. Fabozzi, 2017. "Option pricing for Informed Traders," Papers 1711.09445, arXiv.org.
    3. Rostek, Stefan & Schöbel, Rainer, 2006. "Risk preference based option pricing in a fractional Brownian market," Tübinger Diskussionsbeiträge 299, University of Tübingen, School of Business and Economics.
    4. Dufera, Tamirat Temesgen, 2024. "Fractional Brownian motion in option pricing and dynamic delta hedging: Experimental simulations," The North American Journal of Economics and Finance, Elsevier, vol. 69(PB).
    5. Rostek, S. & Schöbel, R., 2013. "A note on the use of fractional Brownian motion for financial modeling," Economic Modelling, Elsevier, vol. 30(C), pages 30-35.
    6. Stoyan V. Stoyanov & Svetlozar T. Rachev & Stefan Mittnik & Frank J. Fabozzi, 2019. "Pricing Derivatives In Hermite Markets," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(06), pages 1-27, September.
    7. Vilela Mendes, R. & Oliveira, M.J. & Rodrigues, A.M., 2015. "No-arbitrage, leverage and completeness in a fractional volatility model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 470-478.
    8. Li, Xinpeng & Peng, Shige, 2011. "Stopping times and related Itô's calculus with G-Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 121(7), pages 1492-1508, July.
    9. Criens, David & Niemann, Lars, 2024. "A class of multidimensional nonlinear diffusions with the Feller property," Statistics & Probability Letters, Elsevier, vol. 208(C).
    10. Park, Kyunghyun & Wong, Hoi Ying & Yan, Tingjin, 2023. "Robust retirement and life insurance with inflation risk and model ambiguity," Insurance: Mathematics and Economics, Elsevier, vol. 110(C), pages 1-30.
    11. Julian Holzermann, 2019. "Term Structure Modeling under Volatility Uncertainty," Papers 1904.02930, arXiv.org, revised Sep 2021.
    12. Shige Peng & Shuzhen Yang, 2020. "Distributional uncertainty of the financial time series measured by G-expectation," Papers 2011.09226, arXiv.org, revised Jul 2021.
    13. Christian Bender & Tommi Sottinen & Esko Valkeila, 2010. "Fractional processes as models in stochastic finance," Papers 1004.3106, arXiv.org.
    14. Larry G. Epstein & Shaolin Ji, 2013. "Ambiguous Volatility and Asset Pricing in Continuous Time," The Review of Financial Studies, Society for Financial Studies, vol. 26(7), pages 1740-1786.
    15. Epstein, Larry G. & Ji, Shaolin, 2014. "Ambiguous volatility, possibility and utility in continuous time," Journal of Mathematical Economics, Elsevier, vol. 50(C), pages 269-282.
    16. R. Vilela Mendes & M. J. Oliveira & A. M. Rodrigues, 2012. "The fractional volatility model: No-arbitrage, leverage and completeness," Papers 1205.2866, arXiv.org.
    17. Panhong Cheng & Zhihong Xu & Zexing Dai, 2023. "Valuation of vulnerable options with stochastic corporate liabilities in a mixed fractional Brownian motion environment," Mathematics and Financial Economics, Springer, volume 17, number 3, December.
    18. Wei Chen, 2013. "Fractional G-White Noise Theory, Wavelet Decomposition for Fractional G-Brownian Motion, and Bid-Ask Pricing Application to Finance Under Uncertainty," Papers 1306.4070, arXiv.org.
    19. Shige Peng & Huilin Zhang, 2022. "Wong–Zakai Approximation for Stochastic Differential Equations Driven by G-Brownian Motion," Journal of Theoretical Probability, Springer, vol. 35(1), pages 410-425, March.
    20. Max Nendel, 2021. "Markov chains under nonlinear expectation," Mathematical Finance, Wiley Blackwell, vol. 31(1), pages 474-507, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:25:y:2023:i:1:d:10.1007_s11009-023-10010-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.