IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v34y2021i2d10.1007_s10959-020-00998-y.html
   My bibliography  Save this article

Backward Stochastic Differential Equations Driven by G-Brownian Motion with Uniformly Continuous Generators

Author

Listed:
  • Falei Wang

    (Shandong University)

  • Guoqiang Zheng

    (Southeast University)

Abstract

The present paper is devoted to investigating the existence and uniqueness of solutions to a class of non-Lipschitz scalar-valued backward stochastic differential equations driven by G-Brownian motion. In fact, when the generators are Lipschitz continuous in y and uniformly continuous in z, we construct the unique solution to such equations by a linearization technique and a monotone convergence argument. The comparison theorem and related nonlinear Feynman–Kac formula are stated as well.

Suggested Citation

  • Falei Wang & Guoqiang Zheng, 2021. "Backward Stochastic Differential Equations Driven by G-Brownian Motion with Uniformly Continuous Generators," Journal of Theoretical Probability, Springer, vol. 34(2), pages 660-681, June.
  • Handle: RePEc:spr:jotpro:v:34:y:2021:i:2:d:10.1007_s10959-020-00998-y
    DOI: 10.1007/s10959-020-00998-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-020-00998-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-020-00998-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Larry G. Epstein & Shaolin Ji, 2013. "Ambiguous Volatility and Asset Pricing in Continuous Time," The Review of Financial Studies, Society for Financial Studies, vol. 26(7), pages 1740-1786.
    2. Soner, H. Mete & Touzi, Nizar & Zhang, Jianfeng, 2011. "Martingale representation theorem for the G-expectation," Stochastic Processes and their Applications, Elsevier, vol. 121(2), pages 265-287, February.
    3. Hu, Mingshang & Ji, Shaolin, 2017. "Dynamic programming principle for stochastic recursive optimal control problem driven by a G-Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 127(1), pages 107-134.
    4. Hu, Mingshang & Ji, Shaolin & Peng, Shige & Song, Yongsheng, 2014. "Comparison theorem, Feynman–Kac formula and Girsanov transformation for BSDEs driven by G-Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 124(2), pages 1170-1195.
    5. Mao, Xuerong, 1995. "Adapted solutions of backward stochastic differential equations with non-Lipschitz coefficients," Stochastic Processes and their Applications, Elsevier, vol. 58(2), pages 281-292, August.
    6. Hu, Mingshang & Wang, Falei & Zheng, Guoqiang, 2016. "Quasi-continuous random variables and processes under the G-expectation framework," Stochastic Processes and their Applications, Elsevier, vol. 126(8), pages 2367-2387.
    7. Jia, Guangyan, 2010. "Backward stochastic differential equations with a uniformly continuous generator and related g-expectation," Stochastic Processes and their Applications, Elsevier, vol. 120(11), pages 2241-2257, November.
    8. Hu, Mingshang & Ji, Shaolin & Peng, Shige & Song, Yongsheng, 2014. "Backward stochastic differential equations driven by G-Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 759-784.
    9. Peng, Shige, 2008. "Multi-dimensional G-Brownian motion and related stochastic calculus under G-expectation," Stochastic Processes and their Applications, Elsevier, vol. 118(12), pages 2223-2253, December.
    10. Hu, Ying & Lin, Yiqing & Soumana Hima, Abdoulaye, 2018. "Quadratic backward stochastic differential equations driven by G-Brownian motion: Discrete solutions and approximation," Stochastic Processes and their Applications, Elsevier, vol. 128(11), pages 3724-3750.
    11. Fan, ShengJun & Jiang, Long & Tian, DeJian, 2011. "One-dimensional BSDEs with finite and infinite time horizons," Stochastic Processes and their Applications, Elsevier, vol. 121(3), pages 427-440, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Wei & Jiang, Long, 2021. "Solutions of BSDEs with a kind of non-Lipschitz coefficients driven by G-Brownian motion," Statistics & Probability Letters, Elsevier, vol. 171(C).
    2. Hu, Ying & Tang, Shanjian & Wang, Falei, 2022. "Quadratic G-BSDEs with convex generators and unbounded terminal conditions," Stochastic Processes and their Applications, Elsevier, vol. 153(C), pages 363-390.
    3. Liu, Guomin, 2020. "Exit times for semimartingales under nonlinear expectation," Stochastic Processes and their Applications, Elsevier, vol. 130(12), pages 7338-7362.
    4. Hu, Ying & Lin, Yiqing & Soumana Hima, Abdoulaye, 2018. "Quadratic backward stochastic differential equations driven by G-Brownian motion: Discrete solutions and approximation," Stochastic Processes and their Applications, Elsevier, vol. 128(11), pages 3724-3750.
    5. He, Wei, 2024. "Multi-dimensional mean-reflected BSDEs driven by G-Brownian motion with time-varying non-Lipschitz coefficients," Statistics & Probability Letters, Elsevier, vol. 206(C).
    6. Shengqiu Sun, 2022. "Backward Stochastic Differential Equations Driven by G-Brownian Motion with Uniformly Continuous Coefficients in (y, z)," Journal of Theoretical Probability, Springer, vol. 35(1), pages 370-409, March.
    7. Hu, Mingshang & Wang, Falei, 2021. "Probabilistic approach to singular perturbations of viscosity solutions to nonlinear parabolic PDEs," Stochastic Processes and their Applications, Elsevier, vol. 141(C), pages 139-171.
    8. Hu, Mingshang & Ji, Shaolin, 2017. "Dynamic programming principle for stochastic recursive optimal control problem driven by a G-Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 127(1), pages 107-134.
    9. Hanwu Li & Falei Wang, 2019. "Stochastic Optimal Control Problem with Obstacle Constraints in Sublinear Expectation Framework," Journal of Optimization Theory and Applications, Springer, vol. 183(2), pages 422-439, November.
    10. Song, Yongsheng, 2019. "Properties of G-martingales with finite variation and the application to G-Sobolev spaces," Stochastic Processes and their Applications, Elsevier, vol. 129(6), pages 2066-2085.
    11. Wang, Bingjun & Yuan, Mingxia, 2019. "Forward-backward stochastic differential equations driven by G-Brownian motion," Applied Mathematics and Computation, Elsevier, vol. 349(C), pages 39-47.
    12. Park, Kyunghyun & Wong, Hoi Ying & Yan, Tingjin, 2023. "Robust retirement and life insurance with inflation risk and model ambiguity," Insurance: Mathematics and Economics, Elsevier, vol. 110(C), pages 1-30.
    13. Sheng Jun Fan, 2018. "Existence, Uniqueness and Stability of $$L^1$$ L 1 Solutions for Multidimensional Backward Stochastic Differential Equations with Generators of One-Sided Osgood Type," Journal of Theoretical Probability, Springer, vol. 31(3), pages 1860-1899, September.
    14. Epstein, Larry G. & Ji, Shaolin, 2014. "Ambiguous volatility, possibility and utility in continuous time," Journal of Mathematical Economics, Elsevier, vol. 50(C), pages 269-282.
    15. Hanwu Li & Yongsheng Song, 2021. "Backward Stochastic Differential Equations Driven by G-Brownian Motion with Double Reflections," Journal of Theoretical Probability, Springer, vol. 34(4), pages 2285-2314, December.
    16. Hu, Mingshang & Wang, Falei & Zheng, Guoqiang, 2016. "Quasi-continuous random variables and processes under the G-expectation framework," Stochastic Processes and their Applications, Elsevier, vol. 126(8), pages 2367-2387.
    17. Hu, Mingshang & Ji, Xiaojun & Liu, Guomin, 2021. "On the strong Markov property for stochastic differential equations driven by G-Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 131(C), pages 417-453.
    18. Cheng, Bingqian & Wang, Hao & Zhang, Lihong, 2024. "Robust investment for insurers with correlation ambiguity," The Quarterly Review of Economics and Finance, Elsevier, vol. 93(C), pages 247-257.
    19. Shige Peng & Huilin Zhang, 2022. "Wong–Zakai Approximation for Stochastic Differential Equations Driven by G-Brownian Motion," Journal of Theoretical Probability, Springer, vol. 35(1), pages 410-425, March.
    20. Erhan Bayraktar & Alexander Munk, 2014. "Comparing the $G$-Normal Distribution to its Classical Counterpart," Papers 1407.5139, arXiv.org, revised Dec 2014.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:34:y:2021:i:2:d:10.1007_s10959-020-00998-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.