IDEAS home Printed from https://ideas.repec.org/a/eee/quaeco/v93y2024icp247-257.html
   My bibliography  Save this article

Robust investment for insurers with correlation ambiguity

Author

Listed:
  • Cheng, Bingqian
  • Wang, Hao
  • Zhang, Lihong

Abstract

This paper investigates the investment decision of insurers when there is ambiguous correlation between the financial market and the insurance business. The robust decision model that accommodates correlation ambiguity between a risky financial asset and the insurer’s non-tradable surplus is solved under the G-expectation framework. We find that correlation ambiguity leads to a more conservative investment strategy in financial assets, providing a plausible explanation for insurers’ under- or zero investment in the financial market during normal economic times. We also show that the range of priors set of correlation coefficients can be statistically inferred, and insurers will quit the financial market when the range of priors set exceeds a certain level, which is more likely to happen when the remaining investment horizon is long.

Suggested Citation

  • Cheng, Bingqian & Wang, Hao & Zhang, Lihong, 2024. "Robust investment for insurers with correlation ambiguity," The Quarterly Review of Economics and Finance, Elsevier, vol. 93(C), pages 247-257.
  • Handle: RePEc:eee:quaeco:v:93:y:2024:i:c:p:247-257
    DOI: 10.1016/j.qref.2023.11.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1062976923001217
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.qref.2023.11.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ravi Jagannathan & Tongshu Ma, 2003. "Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps," Journal of Finance, American Finance Association, vol. 58(4), pages 1651-1683, August.
    2. Larry G. Epstein & Shaolin Ji, 2013. "Ambiguous Volatility and Asset Pricing in Continuous Time," The Review of Financial Studies, Society for Financial Studies, vol. 26(7), pages 1740-1786.
    3. Raman Uppal & Tan Wang, 2003. "Model Misspecification and Underdiversification," Journal of Finance, American Finance Association, vol. 58(6), pages 2465-2486, December.
    4. Sid Browne, 1995. "Optimal Investment Policies for a Firm With a Random Risk Process: Exponential Utility and Minimizing the Probability of Ruin," Mathematics of Operations Research, INFORMS, vol. 20(4), pages 937-958, November.
    5. Hipp, Christian & Plum, Michael, 2000. "Optimal investment for insurers," Insurance: Mathematics and Economics, Elsevier, vol. 27(2), pages 215-228, October.
    6. Larry G Epstein & Yoram Halevy, 2019. "Ambiguous Correlation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 86(2), pages 668-693.
    7. Hu, Mingshang & Ji, Shaolin, 2017. "Dynamic programming principle for stochastic recursive optimal control problem driven by a G-Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 127(1), pages 107-134.
    8. Li, Danping & Young, Virginia R., 2019. "Optimal reinsurance to minimize the discounted probability of ruin under ambiguity," Insurance: Mathematics and Economics, Elsevier, vol. 87(C), pages 143-152.
    9. Aït-Sahalia, Yacine & Fan, Jianqing & Xiu, Dacheng, 2010. "High-Frequency Covariance Estimates With Noisy and Asynchronous Financial Data," Journal of the American Statistical Association, American Statistical Association, vol. 105(492), pages 1504-1517.
    10. Bo Yi & Frederi Viens & Zhongfei Li & Yan Zeng, 2015. "Robust optimal strategies for an insurer with reinsurance and investment under benchmark and mean-variance criteria," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2015(8), pages 725-751, November.
    11. Pascal J. Maenhout, 2004. "Robust Portfolio Rules and Asset Pricing," The Review of Financial Studies, Society for Financial Studies, vol. 17(4), pages 951-983.
    12. Lars Peter Hansen & Thomas J Sargent, 2014. "A Quartet of Semigroups for Model Specification, Robustness, Prices of Risk, and Model Detection," World Scientific Book Chapters, in: UNCERTAINTY WITHIN ECONOMIC MODELS, chapter 4, pages 83-143, World Scientific Publishing Co. Pte. Ltd..
    13. repec:bla:jfinan:v:58:y:2003:i:4:p:1651-1684 is not listed on IDEAS
    14. Bai, Lihua & Guo, Junyi, 2008. "Optimal proportional reinsurance and investment with multiple risky assets and no-shorting constraint," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 968-975, June.
    15. Chi Liu & Hailiang Yang, 2004. "Optimal Investment for an Insurer to Minimize Its Probability of Ruin," North American Actuarial Journal, Taylor & Francis Journals, vol. 8(2), pages 11-31.
    16. Bi, Junna & Cai, Jun, 2019. "Optimal investment–reinsurance strategies with state dependent risk aversion and VaR constraints in correlated markets," Insurance: Mathematics and Economics, Elsevier, vol. 85(C), pages 1-14.
    17. Lam, Clifford & Feng, Phoenix, 2018. "A nonparametric eigenvalue-regularized integrated covariance matrix estimator for asset return data," LSE Research Online Documents on Economics 88375, London School of Economics and Political Science, LSE Library.
    18. Peng, Shige, 2008. "Multi-dimensional G-Brownian motion and related stochastic calculus under G-expectation," Stochastic Processes and their Applications, Elsevier, vol. 118(12), pages 2223-2253, December.
    19. Liang, Zhibin & Bayraktar, Erhan, 2014. "Optimal reinsurance and investment with unobservable claim size and intensity," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 156-166.
    20. Yang, Hailiang & Zhang, Lihong, 2005. "Optimal investment for insurer with jump-diffusion risk process," Insurance: Mathematics and Economics, Elsevier, vol. 37(3), pages 615-634, December.
    21. Chen, Zhiping & Yang, Peng, 2020. "Robust optimal reinsurance–investment strategy with price jumps and correlated claims," Insurance: Mathematics and Economics, Elsevier, vol. 92(C), pages 27-46.
    22. Daniel Ellsberg, 1961. "Risk, Ambiguity, and the Savage Axioms," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 75(4), pages 643-669.
    23. Liu, Bing & Meng, Hui & Zhou, Ming, 2021. "Optimal investment and reinsurance policies for an insurer with ambiguity aversion," The North American Journal of Economics and Finance, Elsevier, vol. 55(C).
    24. Liang, Xiaoqing & Young, Virginia R., 2018. "Minimizing the probability of ruin: Two riskless assets with transaction costs and proportional reinsurance," Statistics & Probability Letters, Elsevier, vol. 140(C), pages 167-175.
    25. Dow, James & Werlang, Sergio Ribeiro da Costa, 1992. "Uncertainty Aversion, Risk Aversion, and the Optimal Choice of Portfolio," Econometrica, Econometric Society, vol. 60(1), pages 197-204, January.
    26. Bo Yi & Frederi Viens & Baron Law & Zhongfei Li, 2015. "Dynamic portfolio selection with mispricing and model ambiguity," Annals of Finance, Springer, vol. 11(1), pages 37-75, February.
    27. Jianqing Fan & Jinchi Lv, 2008. "Sure independence screening for ultrahigh dimensional feature space," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(5), pages 849-911, November.
    28. Orson H. Hart, 1965. "Life Insurance Companies And The Equity Capital Markets," Journal of Finance, American Finance Association, vol. 20(2), pages 358-367, May.
    29. Kathleen L. Henebry & Jeanette M. Diamond, 1998. "Life Insurance Company Investment Portfolio Composition," Journal of Insurance Issues, Western Risk and Insurance Association, vol. 21(2), pages 183-203.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Xiaoxiao & Zhou, Jieming & Sun, Zhongyang, 2016. "Robust optimal portfolio and proportional reinsurance for an insurer under a CEV model," Insurance: Mathematics and Economics, Elsevier, vol. 67(C), pages 77-87.
    2. Jiang, Julia & Liu, Jun & Tian, Weidong & Zeng, Xudong, 2022. "Portfolio concentration, portfolio inertia, and ambiguous correlation," Journal of Economic Theory, Elsevier, vol. 203(C).
    3. Meyer, Steffen & Uhr, Charline, 2024. "Ambiguity and private investors’ behavior after forced fund liquidations," Journal of Financial Economics, Elsevier, vol. 156(C).
    4. Guan, Guohui & Hu, Jiaqi & Liang, Zongxia, 2022. "Robust equilibrium strategies in a defined benefit pension plan game," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 193-217.
    5. Taboga, Marco, 2005. "Portfolio selection with two-stage preferences," Finance Research Letters, Elsevier, vol. 2(3), pages 152-164, September.
    6. Ya Huang & Xiangqun Yang & Jieming Zhou, 2017. "Robust optimal investment and reinsurance problem for a general insurance company under Heston model," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 85(2), pages 305-326, April.
    7. Liu, Bing & Meng, Hui & Zhou, Ming, 2021. "Optimal investment and reinsurance policies for an insurer with ambiguity aversion," The North American Journal of Economics and Finance, Elsevier, vol. 55(C).
    8. Zhao, Hui & Rong, Ximin & Zhao, Yonggan, 2013. "Optimal excess-of-loss reinsurance and investment problem for an insurer with jump–diffusion risk process under the Heston model," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 504-514.
    9. Yi, Bo & Li, Zhongfei & Viens, Frederi G. & Zeng, Yan, 2013. "Robust optimal control for an insurer with reinsurance and investment under Heston’s stochastic volatility model," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 601-614.
    10. Massimo Guidolin & Francesca Rinaldi, 2013. "Ambiguity in asset pricing and portfolio choice: a review of the literature," Theory and Decision, Springer, vol. 74(2), pages 183-217, February.
    11. Nian Yao & Zhiming Yang, 2017. "Optimal excess-of-loss reinsurance and investment problem for an insurer with default risk under a stochastic volatility model," Papers 1704.08234, arXiv.org.
    12. Wang, Ning & Zhang, Yumo, 2023. "Robust optimal asset-liability management with mispricing and stochastic factor market dynamics," Insurance: Mathematics and Economics, Elsevier, vol. 113(C), pages 251-273.
    13. Guan, Guohui & Liang, Zongxia, 2014. "Optimal reinsurance and investment strategies for insurer under interest rate and inflation risks," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 105-115.
    14. Yumo Zhang, 2023. "Robust Optimal Investment Strategies for Mean-Variance Asset-Liability Management Under 4/2 Stochastic Volatility Models," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-32, March.
    15. Taboga, Marco, 2004. "A Simple Model of Robust Portfolio Selection," MPRA Paper 16472, University Library of Munich, Germany.
    16. Chen, Zhiping & Yang, Peng, 2020. "Robust optimal reinsurance–investment strategy with price jumps and correlated claims," Insurance: Mathematics and Economics, Elsevier, vol. 92(C), pages 27-46.
    17. Gu, Ailing & Viens, Frederi G. & Yao, Haixiang, 2018. "Optimal robust reinsurance-investment strategies for insurers with mean reversion and mispricing," Insurance: Mathematics and Economics, Elsevier, vol. 80(C), pages 93-109.
    18. Liang, Zhibin & Yuen, Kam Chuen & Guo, Junyi, 2011. "Optimal proportional reinsurance and investment in a stock market with Ornstein-Uhlenbeck process," Insurance: Mathematics and Economics, Elsevier, vol. 49(2), pages 207-215, September.
    19. Qianqian Zhou & Junyi Guo, 2020. "Optimal Control of Investment for an Insurer in Two Currency Markets," Papers 2006.02857, arXiv.org.
    20. Hiroaki Hata & Shuenn-Jyi Sheu & Li-Hsien Sun, 2019. "Expected exponential utility maximization of insurers with a general diffusion factor model : The complete market case," Papers 1903.08957, arXiv.org.

    More about this item

    Keywords

    Robust optimization; Decision analysis; Correlation ambiguity; Insurer’s surplus process; G-expectation theory;
    All these keywords.

    JEL classification:

    • G22 - Financial Economics - - Financial Institutions and Services - - - Insurance; Insurance Companies; Actuarial Studies

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:quaeco:v:93:y:2024:i:c:p:247-257. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620167 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.