IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v143y2018icp47-55.html
   My bibliography  Save this article

Large deviations of time-averaged statistics for Gaussian processes

Author

Listed:
  • Gajda, J.
  • Wyłomańska, A.
  • Kantz, H.
  • Chechkin, A.V.
  • Sikora, G.

Abstract

In this paper we study the large deviations of time averaged mean square displacement (TAMSD) for Gaussian processes. The theory of large deviations is related to the exponential decay of probabilities of large fluctuations in random systems. From the mathematical point of view a given statistics satisfies the large deviation principle, if the probability that it belongs to a certain range decreases exponentially. The TAMSD is one of the main statistics used in the problem of anomalous diffusion detection. Applying the theory of generalized chi-squared distribution and sub-gamma random variables we prove the upper bound for large deviations of TAMSD for Gaussian processes. As a special case we consider fractional Brownian motion, one of the most popular models of anomalous diffusion. Moreover, we derive the upper bound for large deviations of the estimator for the anomalous diffusion exponent.

Suggested Citation

  • Gajda, J. & Wyłomańska, A. & Kantz, H. & Chechkin, A.V. & Sikora, G., 2018. "Large deviations of time-averaged statistics for Gaussian processes," Statistics & Probability Letters, Elsevier, vol. 143(C), pages 47-55.
  • Handle: RePEc:eee:stapro:v:143:y:2018:i:c:p:47-55
    DOI: 10.1016/j.spl.2018.07.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715218302578
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2018.07.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gajda, Janusz & Magdziarz, Marcin, 2014. "Large deviations for subordinated Brownian motion and applications," Statistics & Probability Letters, Elsevier, vol. 88(C), pages 149-156.
    2. Fasen, Vicky & Roy, Parthanil, 2016. "Stable random fields, point processes and large deviations," Stochastic Processes and their Applications, Elsevier, vol. 126(3), pages 832-856.
    3. Maroulas, Vasileios & Xiong, Jie, 2013. "Large deviations for optimal filtering with fractional Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 123(6), pages 2340-2352.
    4. Bercu, Bernard & Richou, Adrien, 2017. "Large deviations for the Ornstein–Uhlenbeck process without tears," Statistics & Probability Letters, Elsevier, vol. 123(C), pages 45-55.
    5. Djellout, Hacène & Guillin, Arnaud & Samoura, Yacouba, 2017. "Estimation of the realized (co-)volatility vector: Large deviations approach," Stochastic Processes and their Applications, Elsevier, vol. 127(9), pages 2926-2960.
    6. Hacène Djellout & Arnaud Guillin & Yacouba Samoura, 2017. "Large Deviations Of The Realized (Co-)Volatility Vector," Post-Print hal-01082903, HAL.
    7. Robert B. Davies, 1980. "The Distribution of a Linear Combination of χ2 Random Variables," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 29(3), pages 323-333, November.
    8. Kumar, Rohini & Popovic, Lea, 2017. "Large deviations for multi-scale jump-diffusion processes," Stochastic Processes and their Applications, Elsevier, vol. 127(4), pages 1297-1320.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xinwei Feng & Lidan He & Zhi Liu, 2022. "Large Deviation Principles of Realized Laplace Transform of Volatility," Journal of Theoretical Probability, Springer, vol. 35(1), pages 186-208, March.
    2. Hacène Djellout & Hui Jiang, 2018. "Large Deviations of the Threshold Estimator of Integrated (Co-)Volatility Vector in the Presence of Jumps," Journal of Theoretical Probability, Springer, vol. 31(3), pages 1606-1624, September.
    3. Shively, Philip A., 2000. "Stationary time-varying risk premia in forward foreign exchange rates," Journal of International Money and Finance, Elsevier, vol. 19(2), pages 273-288, April.
    4. Maroulas, Vasileios & Pan, Xiaoyang & Xiong, Jie, 2020. "Large deviations for the optimal filter of nonlinear dynamical systems driven by Lévy noise," Stochastic Processes and their Applications, Elsevier, vol. 130(1), pages 203-231.
    5. Escanciano, Juan Carlos & Jacho-Chávez, David T., 2010. "Approximating the critical values of Cramér-von Mises tests in general parametric conditional specifications," Computational Statistics & Data Analysis, Elsevier, vol. 54(3), pages 625-636, March.
    6. Hong Zhang & Zheyang Wu, 2023. "The generalized Fisher's combination and accurate p‐value calculation under dependence," Biometrics, The International Biometric Society, vol. 79(2), pages 1159-1172, June.
    7. Pötscher, Benedikt M. & Preinerstorfer, David, 2021. "Valid Heteroskedasticity Robust Testing," MPRA Paper 107420, University Library of Munich, Germany.
    8. Mohamed Doukali & Xiaojun Song & Abderrahim Taamouti, 2024. "Value‐at‐Risk under Measurement Error," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 86(3), pages 690-713, June.
    9. Chin-Shang Li, 2016. "A test for the linearity of the nonparametric part of a semiparametric logistic regression model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(3), pages 461-475, March.
    10. Taamouti, Abderrahim, 2009. "Analytical Value-at-Risk and Expected Shortfall under regime-switching," Finance Research Letters, Elsevier, vol. 6(3), pages 138-151, September.
    11. Zhao, Shoujiang & Liu, Qiaojing & Chen, Ting, 2018. "On the large deviation principle for maximum likelihood estimator of α-Brownian bridge," Statistics & Probability Letters, Elsevier, vol. 138(C), pages 143-150.
    12. Nicolas Städler & Sach Mukherjee, 2017. "Two-sample testing in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 225-246, January.
    13. Mahmood Kharrati-Kopaei, 2021. "On the exact distribution of the likelihood ratio test statistic for testing the homogeneity of the scale parameters of several inverse Gaussian distributions," Computational Statistics, Springer, vol. 36(2), pages 1123-1138, June.
    14. Dufour, Jean-Marie, 2008. "Exact optimal and adaptive inference in regression models under heteroskedasticity and non-normality of unknown forms," UC3M Working papers. Economics we086027, Universidad Carlos III de Madrid. Departamento de Economía.
    15. Elodie Persyn & Richard Redon & Lise Bellanger & Christian Dina, 2018. "The impact of a fine-scale population stratification on rare variant association test results," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-17, December.
    16. Panigrahi, Snigdha & Roy, Parthanil & Xiao, Yimin, 2021. "Maximal moments and uniform modulus of continuity for stable random fields," Stochastic Processes and their Applications, Elsevier, vol. 136(C), pages 92-124.
    17. El-Bassiouni, M. Y. & Charif, H. A., 2004. "Testing a null variance ratio in mixed models with zero degrees of freedom for error," Computational Statistics & Data Analysis, Elsevier, vol. 46(4), pages 707-719, July.
    18. A. Basu & A. Mandal & N. Martin & L. Pardo, 2018. "Testing Composite Hypothesis Based on the Density Power Divergence," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(2), pages 222-262, November.
    19. Tamar Sofer & Elizabeth D. Schifano & David C. Christiani & Xihong Lin, 2017. "Weighted pseudolikelihood for SNP set analysis with multiple secondary outcomes in case‐control genetic association studies," Biometrics, The International Biometric Society, vol. 73(4), pages 1210-1220, December.
    20. Bhattacharya, Ayan & Hazra, Rajat Subhra & Roy, Parthanil, 2018. "Branching random walks, stable point processes and regular variation," Stochastic Processes and their Applications, Elsevier, vol. 128(1), pages 182-210.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:143:y:2018:i:c:p:47-55. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.