IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v123y2017icp45-55.html
   My bibliography  Save this article

Large deviations for the Ornstein–Uhlenbeck process without tears

Author

Listed:
  • Bercu, Bernard
  • Richou, Adrien

Abstract

Our goal is to establish large deviations for the maximum likelihood estimator of the drift parameter of the Ornstein–Uhlenbeck process without tears. We propose a new strategy to establish large deviation results which allows us, via a suitable transformation, to circumvent the classical difficulty of non-steepness. Our approach holds in the stable case where the process is positive recurrent as well as in the unstable and explosive cases where the process is respectively null recurrent and transient. It can also be successfully implemented for more complex diffusion processes.

Suggested Citation

  • Bercu, Bernard & Richou, Adrien, 2017. "Large deviations for the Ornstein–Uhlenbeck process without tears," Statistics & Probability Letters, Elsevier, vol. 123(C), pages 45-55.
  • Handle: RePEc:eee:stapro:v:123:y:2017:i:c:p:45-55
    DOI: 10.1016/j.spl.2016.11.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715216302838
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2016.11.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Julie Lyng Forman & Michael Sørensen, 2008. "The Pearson Diffusions: A Class of Statistically Tractable Diffusion Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(3), pages 438-465, September.
    2. Zani, Marguerite, 2002. "Large deviations for squared radial Ornstein-Uhlenbeck processes," Stochastic Processes and their Applications, Elsevier, vol. 102(1), pages 25-42, November.
    3. Bercu, Bernard & Coutin, Laure & Savy, Nicolas, 2012. "Sharp large deviations for the non-stationary Ornstein–Uhlenbeck process," Stochastic Processes and their Applications, Elsevier, vol. 122(10), pages 3393-3424.
    4. Demni, N. & Zani, M., 2009. "Large deviations for statistics of the Jacobi process," Stochastic Processes and their Applications, Elsevier, vol. 119(2), pages 518-533, February.
    5. Zhao, Shoujiang & Gao, Fuqing, 2010. "Large deviations in testing Jacobi model," Statistics & Probability Letters, Elsevier, vol. 80(1), pages 34-41, January.
    6. Aurélien Alfonsi, 2015. "Affine Diffusions and Related Processes: Simulation, Theory and Applications," Post-Print hal-03127212, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Shoujiang & Liu, Qiaojing, 2020. "A large deviation result for maximum likelihood estimator of non-homogeneous Ornstein–Uhlenbeck processes," Statistics & Probability Letters, Elsevier, vol. 162(C).
    2. Hui Jiang & Qingshan Yang, 2022. "Moderate Deviations for Drift Parameter Estimations in Reflected Ornstein–Uhlenbeck Process," Journal of Theoretical Probability, Springer, vol. 35(2), pages 1262-1283, June.
    3. Gajda, J. & Wyłomańska, A. & Kantz, H. & Chechkin, A.V. & Sikora, G., 2018. "Large deviations of time-averaged statistics for Gaussian processes," Statistics & Probability Letters, Elsevier, vol. 143(C), pages 47-55.
    4. Zhao, Shoujiang & Liu, Qiaojing & Chen, Ting, 2018. "On the large deviation principle for maximum likelihood estimator of α-Brownian bridge," Statistics & Probability Letters, Elsevier, vol. 138(C), pages 143-150.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Shoujiang & Zhou, Yanping, 2013. "Sharp large deviations for the log-likelihood ratio of an α-Brownian bridge," Statistics & Probability Letters, Elsevier, vol. 83(12), pages 2750-2758.
    2. Sutthimat, Phiraphat & Mekchay, Khamron & Rujivan, Sanae, 2022. "Closed-form formula for conditional moments of generalized nonlinear drift CEV process," Applied Mathematics and Computation, Elsevier, vol. 428(C).
    3. Damir Filipovi'c & Martin Larsson, 2017. "Polynomial Jump-Diffusion Models," Papers 1711.08043, arXiv.org, revised Jul 2019.
    4. Almut Veraart & Luitgard Veraart, 2012. "Stochastic volatility and stochastic leverage," Annals of Finance, Springer, vol. 8(2), pages 205-233, May.
    5. Friesen, Martin & Jin, Peng & Rüdiger, Barbara, 2020. "Existence of densities for multi-type continuous-state branching processes with immigration," Stochastic Processes and their Applications, Elsevier, vol. 130(9), pages 5426-5452.
    6. A. M. Kulik & N. N. Leonenko & I. Papić & N. Šuvak, 2020. "Parameter Estimation for Non-Stationary Fisher-Snedecor Diffusion," Methodology and Computing in Applied Probability, Springer, vol. 22(3), pages 1023-1061, September.
    7. Larsson, Martin & Pulido, Sergio, 2017. "Polynomial diffusions on compact quadric sets," Stochastic Processes and their Applications, Elsevier, vol. 127(3), pages 901-926.
    8. Raj Kumari Bahl & Sotirios Sabanis, 2017. "General Price Bounds for Guaranteed Annuity Options," Papers 1707.00807, arXiv.org.
    9. Micha{l} Barski & Rafa{l} {L}ochowski, 2024. "Affine term structure models driven by independent L\'evy processes," Papers 2402.07503, arXiv.org.
    10. Bercu, Bernard & Coutin, Laure & Savy, Nicolas, 2012. "Sharp large deviations for the non-stationary Ornstein–Uhlenbeck process," Stochastic Processes and their Applications, Elsevier, vol. 122(10), pages 3393-3424.
    11. Pierre-Edouard Arrouy & Sophian Mehalla & Bernard Lapeyre & Alexandre Boumezoued, 2020. "Jacobi Stochastic Volatility factor for the Libor Market Model," Working Papers hal-02468583, HAL.
    12. Aleksandar Mijatović & Paul Schneider, 2014. "Empirical Asset Pricing with Nonlinear Risk Premia," Journal of Financial Econometrics, Oxford University Press, vol. 12(3), pages 479-506.
    13. Damien Lamberton & Giulia Terenzi, 2019. "Properties of the American price function in the Heston-type models," Working Papers hal-02088487, HAL.
    14. Mar'ia Fernanda del Carmen Agoitia Hurtado & Thorsten Schmidt, 2018. "Time-inhomogeneous polynomial processes," Papers 1806.03887, arXiv.org.
    15. Micha{l} Barski & Rafa{l} {L}ochowski, 2023. "Classification and calibration of affine models driven by independent L\'evy processes," Papers 2303.08477, arXiv.org.
    16. Pierre-Edouard Arrouy & Alexandre Boumezoued & Bernard Lapeyre & Sophian Mehalla, 2022. "Jacobi stochastic volatility factor for the LIBOR market model," Finance and Stochastics, Springer, vol. 26(4), pages 771-823, October.
    17. David R. Ba~nos & Salvador Ortiz-Latorre & Oriol Zamora Font, 2023. "Thiele's PIDE for unit-linked policies in the Heston-Hawkes stochastic volatility model," Papers 2309.03541, arXiv.org, revised Feb 2024.
    18. Rama Cont & Marvin S. Mueller, 2019. "A stochastic partial differential equation model for limit order book dynamics," Papers 1904.03058, arXiv.org, revised May 2021.
    19. Giacomo Ascione & Nikolai Leonenko & Enrica Pirozzi, 2022. "Non-local Solvable Birth–Death Processes," Journal of Theoretical Probability, Springer, vol. 35(2), pages 1284-1323, June.
    20. Eduardo Abi Jaber, 2022. "The Laplace transform of the integrated Volterra Wishart process," Mathematical Finance, Wiley Blackwell, vol. 32(1), pages 309-348, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:123:y:2017:i:c:p:45-55. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.