IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v53y2009i4p853-856.html
   My bibliography  Save this article

A new chi-square approximation to the distribution of non-negative definite quadratic forms in non-central normal variables

Author

Listed:
  • Liu, Huan
  • Tang, Yongqiang
  • Zhang, Hao Helen

Abstract

This note proposes a new chi-square approximation to the distribution of non-negative definite quadratic forms in non-central normal variables. The unknown parameters are determined by the first four cumulants of the quadratic forms. The proposed method is compared with Pearson's three-moment central [chi]2 approximation approach, by means of numerical examples. Our method yields a better approximation to the distribution of the non-central quadratic forms than Pearson's method, particularly in the upper tail of the quadratic form, the tail most often needed in practical work.

Suggested Citation

  • Liu, Huan & Tang, Yongqiang & Zhang, Hao Helen, 2009. "A new chi-square approximation to the distribution of non-negative definite quadratic forms in non-central normal variables," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 853-856, February.
  • Handle: RePEc:eee:csdana:v:53:y:2009:i:4:p:853-856
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00565-3
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert B. Davies, 1980. "The Distribution of a Linear Combination of χ2 Random Variables," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 29(3), pages 323-333, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chenhua Li & Gary M. Gaukler & Yu Ding, 2013. "Using container inspection history to improve interdiction logistics for illicit nuclear materials," Naval Research Logistics (NRL), John Wiley & Sons, vol. 60(6), pages 433-448, September.
    2. Qianchuan He & Yang Liu & Ulrike Peters & Li Hsu, 2018. "Multivariate association analysis with somatic mutation data," Biometrics, The International Biometric Society, vol. 74(1), pages 176-184, March.
    3. Hui-Guo Zhang & Chang-Lin Mei, 2017. "Discussion," International Statistical Review, International Statistical Institute, vol. 85(1), pages 38-40, April.
    4. Zhidong Bai & Guangming Pan & Yanqing Yin, 2018. "A central limit theorem for sums of functions of residuals in a high-dimensional regression model with an application to variance homoscedasticity test," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(4), pages 896-920, December.
    5. Xuemei Hu & Xiaohui Liu, 2013. "Empirical likelihood confidence regions for semi-varying coefficient models with linear process errors," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 25(1), pages 161-180, March.
    6. Chen, Tong & Lumley, Thomas, 2019. "Numerical evaluation of methods approximating the distribution of a large quadratic form in normal variables," Computational Statistics & Data Analysis, Elsevier, vol. 139(C), pages 75-81.
    7. Sanae Rujivan & Athinan Sutchada & Kittisak Chumpong & Napat Rujeerapaiboon, 2023. "Analytically Computing the Moments of a Conic Combination of Independent Noncentral Chi-Square Random Variables and Its Application for the Extended Cox–Ingersoll–Ross Process with Time-Varying Dimens," Mathematics, MDPI, vol. 11(5), pages 1-29, March.
    8. Duchesne, Pierre & Lafaye De Micheaux, Pierre, 2010. "Computing the distribution of quadratic forms: Further comparisons between the Liu-Tang-Zhang approximation and exact methods," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 858-862, April.
    9. Zimmer, Zachary & Park, DoHwan & Mathew, Thomas, 2016. "Tolerance limits under normal mixtures: Application to the evaluation of nuclear power plant safety and to the assessment of circular error probable," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 304-315.
    10. Songhua Tan & Qianqian Zhu, 2022. "Asymmetric linear double autoregression," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(3), pages 371-388, May.
    11. Solberger, M. & Zhou, X., 2013. "LM-type tests for idiosyncratic and common unit roots in the exact factor model with AR(1) dynamics," Research Memorandum 059, Maastricht University, Graduate School of Business and Economics (GSBE).
    12. Wei Dai & Ming Yang & Chaolong Wang & Tianxi Cai, 2017. "Sequence robust association test for familial data," Biometrics, The International Biometric Society, vol. 73(3), pages 876-884, September.
    13. Huang, Peng & Gu, Yingkui & Li, He & Yazdi, Mohammad & Qiu, Guangqi, 2023. "An Optimal Tolerance Design Approach of Robot Manipulators for Positioning Accuracy Reliability," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    14. Yamaguchi, Hikaru & Murakami, Hidetoshi, 2023. "The multi-aspect tests in the presence of ties," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Escanciano, Juan Carlos & Jacho-Chávez, David T., 2010. "Approximating the critical values of Cramér-von Mises tests in general parametric conditional specifications," Computational Statistics & Data Analysis, Elsevier, vol. 54(3), pages 625-636, March.
    2. Nicolas Städler & Sach Mukherjee, 2017. "Two-sample testing in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 225-246, January.
    3. Mahmood Kharrati-Kopaei, 2021. "On the exact distribution of the likelihood ratio test statistic for testing the homogeneity of the scale parameters of several inverse Gaussian distributions," Computational Statistics, Springer, vol. 36(2), pages 1123-1138, June.
    4. Elodie Persyn & Richard Redon & Lise Bellanger & Christian Dina, 2018. "The impact of a fine-scale population stratification on rare variant association test results," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-17, December.
    5. A. Basu & A. Mandal & N. Martin & L. Pardo, 2018. "Testing Composite Hypothesis Based on the Density Power Divergence," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(2), pages 222-262, November.
    6. Yunxuan Jiang & Karen N. Conneely & Michael P. Epstein, 2018. "Robust Rare-Variant Association Tests for Quantitative Traits in General Pedigrees," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 10(3), pages 491-505, December.
    7. Andrea Cerasa, 2016. "Combining homogeneous groups of preclassified observations with application to international trade," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 70(3), pages 229-259, August.
    8. Juneyoung Lee & Andre Khuri, 1999. "Graphical technique for comparing designs for random models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 26(8), pages 933-947.
    9. Emily Kistner & Keith Muller, 2004. "Exact distributions of intraclass correlation and Cronbach's alpha with Gaussian data and general covariance," Psychometrika, Springer;The Psychometric Society, vol. 69(3), pages 459-474, September.
    10. Aman Ullah & Yong Bao & Yun Wang, 2014. "Exact Distribution of the Mean Reversion Estimator in the Ornstein-Uhlenbeck Process," Working Papers 201413, University of California at Riverside, Department of Economics.
    11. Kulkarni, Pandurang M. & Shah, Arvind K., 1995. "Testing the equality of several binomial proportions to a prespecified standard," Statistics & Probability Letters, Elsevier, vol. 25(3), pages 213-219, November.
    12. Pötscher, Benedikt M. & Preinerstorfer, David, 2021. "Valid Heteroskedasticity Robust Testing," MPRA Paper 117855, University Library of Munich, Germany, revised Jul 2023.
    13. Mohamed Doukali & Xiaojun Song & Abderrahim Taamouti, 2022. "Value-at Risk under Measurement Error," Working Papers 202209, University of Liverpool, Department of Economics.
    14. Chen, Yin-Hsiu & Mukherjee, Bhramar, 2017. "A new variance component score test for testing distributed lag functions with applications in time series analysis," Statistics & Probability Letters, Elsevier, vol. 123(C), pages 122-127.
    15. Hong Zhang & Zheyang Wu, 2023. "The generalized Fisher's combination and accurate p‐value calculation under dependence," Biometrics, The International Biometric Society, vol. 79(2), pages 1159-1172, June.
    16. Dufour, Jean-Marie & Taamouti, Abderrahim, 2008. "Exact optimal and adaptive inference in regression models under heteroskedasticity and non-normality of unknown forms," UC3M Working papers. Economics we086027, Universidad Carlos III de Madrid. Departamento de Economía.
    17. El-Bassiouni, M. Y. & Charif, H. A., 2004. "Testing a null variance ratio in mixed models with zero degrees of freedom for error," Computational Statistics & Data Analysis, Elsevier, vol. 46(4), pages 707-719, July.
    18. Peng, Qidi & Schellhorn, Henry, 2018. "On the distribution of extended CIR model," Statistics & Probability Letters, Elsevier, vol. 142(C), pages 23-29.
    19. Shively, Philip A., 2002. "An exact invariant variance ratio test," Economics Letters, Elsevier, vol. 75(3), pages 347-353, May.
    20. Francesca Torti & Domenico Perrotta & Marco Riani & Andrea Cerioli, 2019. "Assessing trimming methodologies for clustering linear regression data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(1), pages 227-257, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:53:y:2009:i:4:p:853-856. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.