IDEAS home Printed from https://ideas.repec.org/a/spr/sankha/v86y2024i1d10.1007_s13171-024-00342-0.html
   My bibliography  Save this article

Bayesian Linear Inverse Problems in Regularity Scales with Discrete Observations

Author

Listed:
  • Dong Yan

    (TU Delft)

  • Shota Gugushvili

    (Wageningen University & Research)

  • Aad Vaart

    (TU Delft)

Abstract

We obtain rates of contraction of posterior distributions in inverse problems with discrete observations. In a general setting of smoothness scales we derive abstract results for general priors, with contraction rates determined by discrete Galerkin approximation. The rate depends on the amount of prior concentration near the true function and the prior mass of functions with inferior Galerkin approximation. We apply the general result to non-conjugate series priors, showing that these priors give near optimal and adaptive recovery in some generality, Gaussian priors, and mixtures of Gaussian priors, where the latter are also shown to be near optimal and adaptive.

Suggested Citation

  • Dong Yan & Shota Gugushvili & Aad Vaart, 2024. "Bayesian Linear Inverse Problems in Regularity Scales with Discrete Observations," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 86(1), pages 228-254, November.
  • Handle: RePEc:spr:sankha:v:86:y:2024:i:1:d:10.1007_s13171-024-00342-0
    DOI: 10.1007/s13171-024-00342-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13171-024-00342-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13171-024-00342-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Florens, Jean-Pierre & Simoni, Anna, 2016. "Regularizing Priors For Linear Inverse Problems," Econometric Theory, Cambridge University Press, vol. 32(1), pages 71-121, February.
    2. repec:dau:papers:123456789/11426 is not listed on IDEAS
    3. Suzanne Sniekers & Aad Vaart, 2020. "Adaptive Bayesian credible bands in regression with a Gaussian process prior," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 82(2), pages 386-425, August.
    4. Julyan Arbel & Ghislaine Gayraud & Judith Rousseau, 2013. "Bayesian Optimal Adaptive Estimation Using a Sieve Prior," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(3), pages 549-570, September.
    5. Julyan Arbel & Ghislaine Gayraud & Judith Rousseau, 2013. "Bayesian Optimal Adaptive Estimation Using a Sieve prior," Working Papers 2013-19, Center for Research in Economics and Statistics.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jan Johannes & Anna Simoni & Rudolf Schenk, 2020. "Adaptive Bayesian Estimation in Indirect Gaussian Sequence Space Models," Annals of Economics and Statistics, GENES, issue 137, pages 83-116.
    2. Yi, Taihe & Wang, Zhengming, 2017. "Bayesian sieve method for piece-wise smooth regression," Statistics & Probability Letters, Elsevier, vol. 130(C), pages 5-11.
    3. Weining Shen & Subhashis Ghosal, 2015. "Adaptive Bayesian Procedures Using Random Series Priors," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(4), pages 1194-1213, December.
    4. I. Votsi & G. Gayraud & V. S. Barbu & N. Limnios, 2021. "Hypotheses testing and posterior concentration rates for semi-Markov processes," Statistical Inference for Stochastic Processes, Springer, vol. 24(3), pages 707-732, October.
    5. Zhe Wang & Ryan Martin, 2021. "Gibbs posterior inference on a Levy density under discrete sampling," Papers 2109.06567, arXiv.org.
    6. van Waaij, Jan & van Zanten, Harry, 2017. "Full adaptation to smoothness using randomly truncated series priors with Gaussian coefficients and inverse gamma scaling," Statistics & Probability Letters, Elsevier, vol. 123(C), pages 93-99.
    7. Laurent Ferrara & Anna Simoni, 2023. "When are Google Data Useful to Nowcast GDP? An Approach via Preselection and Shrinkage," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(4), pages 1188-1202, October.
    8. Jean-Pierre Florens & Anna Simoni, 2021. "Gaussian Processes and Bayesian Moment Estimation," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(2), pages 482-492, March.
    9. Florens, Jean-Pierre & Simoni, Anna, 2016. "Regularizing Priors For Linear Inverse Problems," Econometric Theory, Cambridge University Press, vol. 32(1), pages 71-121, February.
    10. Siddhartha Chib & Minchul Shin & Anna Simoni, 2022. "Bayesian estimation and comparison of conditional moment models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(3), pages 740-764, July.
    11. Florens, Jean-Pierre & Simoni, Anna, 2012. "Nonparametric estimation of an instrumental regression: A quasi-Bayesian approach based on regularized posterior," Journal of Econometrics, Elsevier, vol. 170(2), pages 458-475.
    12. Liao, Yuan & Jiang, Wenxin, 2011. "Posterior consistency of nonparametric conditional moment restricted models," MPRA Paper 38700, University Library of Munich, Germany.
    13. Natalia Bochkina & Jenovah Rodrigues, 2023. "Bayesian inverse problems with heterogeneous variance," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 50(3), pages 1116-1151, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sankha:v:86:y:2024:i:1:d:10.1007_s13171-024-00342-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.