IDEAS home Printed from https://ideas.repec.org/p/crs/wpaper/2013-19.html
   My bibliography  Save this paper

Bayesian Optimal Adaptive Estimation Using a Sieve prior

Author

Listed:
  • Julyan Arbel

    (CREST)

  • Ghislaine Gayraud

    (CREST)

  • Judith Rousseau

    (CREST)

Abstract

We derive rates of contraction of posterior distributions on nonparametric models resulting from sieve priors. The aim of the paper is to provide general conditions to get posterior rates when the parameter space has a general structure, and rate adaptation when the parameter space is, e.g., a Sobolev class. The conditions employed, although standard in the literature, are combined in a different way. The results are applied to density, regression, nonlinear autoregression and Gaussian white noise models. In the latter we have also considered a loss function which is different from the usual l2 norm, namely the pointwise loss. In this case it is possible to prove that the adaptive Bayesian approach for the l2 loss is strongly suboptimal and we provide a lower bound on the rate.

Suggested Citation

  • Julyan Arbel & Ghislaine Gayraud & Judith Rousseau, 2013. "Bayesian Optimal Adaptive Estimation Using a Sieve prior," Working Papers 2013-19, Center for Research in Economics and Statistics.
  • Handle: RePEc:crs:wpaper:2013-19
    as

    Download full text from publisher

    File URL: http://crest.science/RePEc/wpstorage/2013-19.pdf
    File Function: Crest working paper version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Felix Abramovich & Claudia Angelini & Daniela Canditiis, 2007. "Pointwise optimality of Bayesian wavelet estimators," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 59(3), pages 425-434, September.
    2. Felix Abramovich & Vadim Grinshtein & Athanasia Petsa & Theofanis Sapatinas, 2010. "On Bayesian testimation and its application to wavelet thresholding," Biometrika, Biometrika Trust, vol. 97(1), pages 181-198.
    3. repec:dau:papers:123456789/1908 is not listed on IDEAS
    4. repec:dau:papers:123456789/7335 is not listed on IDEAS
    5. F. Abramovich & T. Sapatinas & B. W. Silverman, 1998. "Wavelet thresholding via a Bayesian approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(4), pages 725-749.
    6. Felix Abramovich & Umberto Amato & Claudia Angelini, 2004. "On Optimality of Bayesian Wavelet Estimators," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 31(2), pages 217-234, June.
    7. Judith Rousseau & Nicolas Chopin & Brunero Liseo, 2010. "Bayesian Nonparametric Estimation of the Spectral Density of a Long or Intermediate Memory Gaussian Process," Working Papers 2010-38, Center for Research in Economics and Statistics.
    8. repec:dau:papers:123456789/3984 is not listed on IDEAS
    9. repec:dau:papers:123456789/4659 is not listed on IDEAS
    10. Babenko, Alexandra & Belitser, Eduard, 2009. "On the posterior pointwise convergence rate of a Gaussian signal under a conjugate prior," Statistics & Probability Letters, Elsevier, vol. 79(5), pages 670-675, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jan Johannes & Anna Simoni & Rudolf Schenk, 2020. "Adaptive Bayesian Estimation in Indirect Gaussian Sequence Space Models," Annals of Economics and Statistics, GENES, issue 137, pages 83-116.
    2. Zhe Wang & Ryan Martin, 2021. "Gibbs posterior inference on a Levy density under discrete sampling," Papers 2109.06567, arXiv.org.
    3. I. Votsi & G. Gayraud & V. S. Barbu & N. Limnios, 2021. "Hypotheses testing and posterior concentration rates for semi-Markov processes," Statistical Inference for Stochastic Processes, Springer, vol. 24(3), pages 707-732, October.
    4. Yi, Taihe & Wang, Zhengming, 2017. "Bayesian sieve method for piece-wise smooth regression," Statistics & Probability Letters, Elsevier, vol. 130(C), pages 5-11.
    5. van Waaij, Jan & van Zanten, Harry, 2017. "Full adaptation to smoothness using randomly truncated series priors with Gaussian coefficients and inverse gamma scaling," Statistics & Probability Letters, Elsevier, vol. 123(C), pages 93-99.
    6. Weining Shen & Subhashis Ghosal, 2015. "Adaptive Bayesian Procedures Using Random Series Priors," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(4), pages 1194-1213, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Julyan Arbel & Ghislaine Gayraud & Judith Rousseau, 2013. "Bayesian Optimal Adaptive Estimation Using a Sieve Prior," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(3), pages 549-570, September.
    2. ter Braak, Cajo J.F., 2006. "Bayesian sigmoid shrinkage with improper variance priors and an application to wavelet denoising," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 1232-1242, November.
    3. Marco Di Zio & Arnoldo Frigessi, 1999. "Smoothness in Bayesian Non-parametric Regression with Wavelets," Methodology and Computing in Applied Probability, Springer, vol. 1(4), pages 391-405, December.
    4. Babenko, Alexandra & Belitser, Eduard, 2011. "Lower bound for the oracle projection posterior convergence rate," Statistics & Probability Letters, Elsevier, vol. 81(2), pages 175-180, February.
    5. A. Antoniadis, 1997. "Rejoinder," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 6(2), pages 143-144, August.
    6. Matthieu Garcin & Dominique Guegan, 2015. "Optimal wavelet shrinkage of a noisy dynamical system with non-linear noise impact," Documents de travail du Centre d'Economie de la Sorbonne 15085, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    7. Mak Kaboudan, 2006. "Computational Forecasting of Wavelet-converted Monthly Sunspot Numbers," Journal of Applied Statistics, Taylor & Francis Journals, vol. 33(9), pages 925-941.
    8. Hee-Seok Oh & Donghoh Kim & Youngjo Lee, 2009. "Cross-validated wavelet shrinkage," Computational Statistics, Springer, vol. 24(3), pages 497-512, August.
    9. Capobianco Enrico & Marras Elisabetta & Travaglione Antonella, 2011. "Multiscale Characterization of Signaling Network Dynamics through Features," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-32, November.
    10. Iolanda Lo Cascio, 2007. "Wavelet Analysis and Denoising: New Tools for Economists," Working Papers 600, Queen Mary University of London, School of Economics and Finance.
    11. Alex Rodrigo dos S. Sousa & Nancy L. Garcia & Brani Vidakovic, 2021. "Bayesian wavelet shrinkage with beta priors," Computational Statistics, Springer, vol. 36(2), pages 1341-1363, June.
    12. Christophe Chesneau & Fabien Navarro, 2017. "On the pointwise mean squared error of a multidimensional term-by-term thresholding wavelet estimator," Working Papers 2017-68, Center for Research in Economics and Statistics.
    13. A. Antoniadis, 1997. "Wavelets in statistics: A review," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 6(2), pages 97-130, August.
    14. Felix Abramovich & Claudia Angelini & Daniela Canditiis, 2007. "Pointwise optimality of Bayesian wavelet estimators," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 59(3), pages 425-434, September.
    15. Haven, Emmanuel & Liu, Xiaoquan & Shen, Liya, 2012. "De-noising option prices with the wavelet method," European Journal of Operational Research, Elsevier, vol. 222(1), pages 104-112.
    16. Wang, Xue & Walker, Stephen G., 2010. "A penalised data-driven block shrinkage approach to empirical Bayes wavelet estimation," Statistics & Probability Letters, Elsevier, vol. 80(11-12), pages 990-996, June.
    17. Abramovich, Felix & Besbeas, Panagiotis & Sapatinas, Theofanis, 2002. "Empirical Bayes approach to block wavelet function estimation," Computational Statistics & Data Analysis, Elsevier, vol. 39(4), pages 435-451, June.
    18. Stuart Barber & Guy P. Nason, 2004. "Real nonparametric regression using complex wavelets," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(4), pages 927-939, November.
    19. Beran, Jan & Shumeyko, Yevgen, 2012. "Bootstrap testing for discontinuities under long-range dependence," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 322-347.
    20. Jiang, Wenhua & Zhang, Cun-Hui, 2013. "A nonparametric empirical Bayes approach to adaptive minimax estimation," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 82-95.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:crs:wpaper:2013-19. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Secretariat General (email available below). General contact details of provider: https://edirc.repec.org/data/crestfr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.