IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v30y2014i06p1272-1314_00.html
   My bibliography  Save this article

Efficient Regressions Via Optimally Combining Quantile Information

Author

Listed:
  • Zhao, Zhibiao
  • Xiao, Zhijie

Abstract

We develop a generally applicable framework for constructing efficient estimators of regression models via quantile regressions. The proposed method is based on optimally combining information over multiple quantiles and can be applied to a broad range of parametric and nonparametric settings. When combining information over a fixed number of quantiles, we derive an upper bound on the distance between the efficiency of the proposed estimator and the Fisher information. As the number of quantiles increases, this upper bound decreases and the asymptotic variance of the proposed estimator approaches the Cramér–Rao lower bound under appropriate conditions. In the case of nonregular statistical estimation, the proposed estimator leads to super-efficient estimation. We illustrate the proposed method for several widely used regression models. Both asymptotic theory and Monte Carlo experiments show the superior performance over existing methods.

Suggested Citation

  • Zhao, Zhibiao & Xiao, Zhijie, 2014. "Efficient Regressions Via Optimally Combining Quantile Information," Econometric Theory, Cambridge University Press, vol. 30(6), pages 1272-1314, December.
  • Handle: RePEc:cup:etheor:v:30:y:2014:i:06:p:1272-1314_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466614000176/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:30:y:2014:i:06:p:1272-1314_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.