IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v77y2021i2p610-621.html
   My bibliography  Save this article

Quantile regression for survival data with covariates subject to detection limits

Author

Listed:
  • Tonghui Yu
  • Liming Xiang
  • Huixia Judy Wang

Abstract

With advances in biomedical research, biomarkers are becoming increasingly important prognostic factors for predicting overall survival, while the measurement of biomarkers is often censored due to instruments' lower limits of detection. This leads to two types of censoring: random censoring in overall survival outcomes and fixed censoring in biomarker covariates, posing new challenges in statistical modeling and inference. Existing methods for analyzing such data focus primarily on linear regression ignoring censored responses or semiparametric accelerated failure time models with covariates under detection limits (DL). In this paper, we propose a quantile regression for survival data with covariates subject to DL. Comparing to existing methods, the proposed approach provides a more versatile tool for modeling the distribution of survival outcomes by allowing covariate effects to vary across conditional quantiles of the survival time and requiring no parametric distribution assumptions for outcome data. To estimate the quantile process of regression coefficients, we develop a novel multiple imputation approach based on another quantile regression for covariates under DL, avoiding stringent parametric restrictions on censored covariates as often assumed in the literature. Under regularity conditions, we show that the estimation procedure yields uniformly consistent and asymptotically normal estimators. Simulation results demonstrate the satisfactory finite‐sample performance of the method. We also apply our method to the motivating data from a study of genetic and inflammatory markers of Sepsis.

Suggested Citation

  • Tonghui Yu & Liming Xiang & Huixia Judy Wang, 2021. "Quantile regression for survival data with covariates subject to detection limits," Biometrics, The International Biometric Society, vol. 77(2), pages 610-621, June.
  • Handle: RePEc:bla:biomet:v:77:y:2021:i:2:p:610-621
    DOI: 10.1111/biom.13309
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13309
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13309?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wang, Huixia Judy & Wang, Lan, 2009. "Locally Weighted Censored Quantile Regression," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 1117-1128.
    2. Victor Chernozhukov & Iv·n Fern·ndez-Val & Alfred Galichon, 2010. "Quantile and Probability Curves Without Crossing," Econometrica, Econometric Society, vol. 78(3), pages 1093-1125, May.
    3. repec:hal:spmain:info:hdl:2441/5rkqqmvrn4tl22s9mc4b6ga2g is not listed on IDEAS
    4. repec:hal:wpspec:info:hdl:2441/5rkqqmvrn4tl22s9mc4b6ga2g is not listed on IDEAS
    5. Bernhardt, Paul W. & Wang, Huixia Judy & Zhang, Daowen, 2014. "Flexible modeling of survival data with covariates subject to detection limits via multiple imputation," Computational Statistics & Data Analysis, Elsevier, vol. 69(C), pages 81-91.
    6. Portnoy S., 2003. "Censored Regression Quantiles," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 1001-1012, January.
    7. Peng, Limin & Huang, Yijian, 2008. "Survival Analysis With Quantile Regression Models," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 637-649, June.
    8. Chen, Yi-Hau & Chatterjee, Nilanjan & Carroll, Raymond J., 2009. "Shrinkage Estimators for Robust and Efficient Inference in Haplotype-Based Case-Control Studies," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 220-233.
    9. Ying Wei & Yanyuan Ma & Raymond J. Carroll, 2012. "Multiple imputation in quantile regression," Biometrika, Biometrika Trust, vol. 99(2), pages 423-438.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Narisetty, Naveen & Koenker, Roger, 2022. "Censored quantile regression survival models with a cure proportion," Journal of Econometrics, Elsevier, vol. 226(1), pages 192-203.
    2. De Backer, Mickael & El Ghouch, Anouar & Van Keilegom, Ingrid, 2017. "An Adapted Loss Function for Censored Quantile Regression," LIDAM Discussion Papers ISBA 2017003, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. Lin, Guixian & He, Xuming & Portnoy, Stephen, 2012. "Quantile regression with doubly censored data," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 797-812.
    4. Kyu Hyun Kim & Daniel J. Caplan & Sangwook Kang, 2023. "Smoothed quantile regression for censored residual life," Computational Statistics, Springer, vol. 38(2), pages 1001-1022, June.
    5. Jiang, Rong & Qian, Weimin & Zhou, Zhangong, 2012. "Variable selection and coefficient estimation via composite quantile regression with randomly censored data," Statistics & Probability Letters, Elsevier, vol. 82(2), pages 308-317.
    6. Harding, Matthew & Lamarche, Carlos, 2019. "A panel quantile approach to attrition bias in Big Data: Evidence from a randomized experiment," Journal of Econometrics, Elsevier, vol. 211(1), pages 61-82.
    7. Jung-Yu Cheng & Shinn-Jia Tzeng, 2014. "Quantile regression of right-censored length-biased data using the Buckley–James-type method," Computational Statistics, Springer, vol. 29(6), pages 1571-1592, December.
    8. Fan, Yanqin & Liu, Ruixuan, 2018. "Partial identification and inference in censored quantile regression," Journal of Econometrics, Elsevier, vol. 206(1), pages 1-38.
    9. Miguel A Delgado & Andrés García-Suaza & Pedro H C Sant’Anna, 2022. "Distribution regression in duration analysis: an application to unemployment spells [Lecture notes in statistics: Proceedings]," The Econometrics Journal, Royal Economic Society, vol. 25(3), pages 675-698.
    10. García, A., 2016. "Oaxaca-Blinder Type Counterfactual Decomposition Methods for Duration Outcomes," Documentos de Trabajo 14186, Universidad del Rosario.
    11. Xiaofeng Lv & Gupeng Zhang & Xinkuo Xu & Qinghai Li, 2019. "Weighted quantile regression for censored data with application to export duration data," Statistical Papers, Springer, vol. 60(4), pages 1161-1192, August.
    12. Peng, Limin, 2012. "Self-consistent estimation of censored quantile regression," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 368-379.
    13. Chen, Songnian, 2018. "Sequential estimation of censored quantile regression models," Journal of Econometrics, Elsevier, vol. 207(1), pages 30-52.
    14. Xie, Shangyu & Wan, Alan T.K. & Zhou, Yong, 2015. "Quantile regression methods with varying-coefficient models for censored data," Computational Statistics & Data Analysis, Elsevier, vol. 88(C), pages 154-172.
    15. Akram Yazdani & Hojjat Zeraati & Mehdi Yaseri & Shahpar Haghighat & Ahmad Kaviani, 2022. "Laplace regression with clustered censored data," Computational Statistics, Springer, vol. 37(3), pages 1041-1068, July.
    16. Jad Beyhum & Lorenzo Tedesco & Ingrid Van Keilegom, 2022. "Instrumental variable quantile regression under random right censoring," Papers 2209.01429, arXiv.org, revised Feb 2023.
    17. Yuanshan Wu & Guosheng Yin, 2013. "Cure Rate Quantile Regression for Censored Data With a Survival Fraction," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(504), pages 1517-1531, December.
    18. Frumento, Paolo & Bottai, Matteo, 2017. "An estimating equation for censored and truncated quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 53-63.
    19. Pang, Lei & Lu, Wenbin & Wang, Huixia Judy, 2012. "Variance estimation in censored quantile regression via induced smoothing," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 785-796.
    20. Tang, Yanlin & Wang, Huixia Judy, 2015. "Penalized regression across multiple quantiles under random censoring," Journal of Multivariate Analysis, Elsevier, vol. 141(C), pages 132-146.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:77:y:2021:i:2:p:610-621. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.