IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v72y1997i2p205-219.html
   My bibliography  Save this article

Estimation of parameters of linear homogeneous stochastic differential equations

Author

Listed:
  • Jankunas, Andrius
  • Khasminskii, Rafail Z.

Abstract

In this paper we investigate the problem of parametric estimation for multidimensional linear autonomous homogeneous stochastic differential equations. We prove the Local Asymptotical Normality (LAN) property, find the Maximum Likelihood Estimator (MLE), and prove an asymptotical efficiency of MLE for bounded loss functions, when the observation time tends to infinity.

Suggested Citation

  • Jankunas, Andrius & Khasminskii, Rafail Z., 1997. "Estimation of parameters of linear homogeneous stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 72(2), pages 205-219, December.
  • Handle: RePEc:eee:spapps:v:72:y:1997:i:2:p:205-219
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(97)00083-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nakahiro Yoshida, 1990. "Asymptotic behavior of M-estimator and related random field for diffusion process," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 42(2), pages 221-251, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dehay, D. & El Waled, K., 2013. "Nonparametric estimation problem for a time-periodic signal in a periodic noise," Statistics & Probability Letters, Elsevier, vol. 83(2), pages 608-615.
    2. Yang, Xiangfeng & Liu, Yuhan & Park, Gyei-Kark, 2020. "Parameter estimation of uncertain differential equation with application to financial market," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    3. Mishura, Yuliya, 2014. "Standard maximum likelihood drift parameter estimator in the homogeneous diffusion model is always strongly consistent," Statistics & Probability Letters, Elsevier, vol. 86(C), pages 24-29.
    4. Loukianova, D. & Loukianov, O., 2005. "Uniform law of large numbers and consistency of estimators for Harris diffusions," Statistics & Probability Letters, Elsevier, vol. 74(4), pages 347-355, October.
    5. Andrius Jankunas, 1999. "Local Asymptotic Normality for Linear Homogeneous Difference Equations with Non-Gaussian Noise," Journal of Theoretical Probability, Springer, vol. 12(3), pages 675-697, July.
    6. N. Lin & S. Lototsky, 2014. "Second-order continuous-time non-stationary Gaussian autoregression," Statistical Inference for Stochastic Processes, Springer, vol. 17(1), pages 19-49, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nakahiro Yoshida, 2022. "Quasi-likelihood analysis and its applications," Statistical Inference for Stochastic Processes, Springer, vol. 25(1), pages 43-60, April.
    2. Kohei Chiba, 2020. "An M-estimator for stochastic differential equations driven by fractional Brownian motion with small Hurst parameter," Statistical Inference for Stochastic Processes, Springer, vol. 23(2), pages 319-353, July.
    3. Sonja Rieder, 2012. "Robust parameter estimation for the Ornstein–Uhlenbeck process," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 21(4), pages 411-436, November.
    4. Iacus, Stefano Maria & Uchida, Masayuki & Yoshida, Nakahiro, 2009. "Parametric estimation for partially hidden diffusion processes sampled at discrete times," Stochastic Processes and their Applications, Elsevier, vol. 119(5), pages 1580-1600, May.
    5. Uchida, Masayuki, 2008. "Approximate martingale estimating functions for stochastic differential equations with small noises," Stochastic Processes and their Applications, Elsevier, vol. 118(9), pages 1706-1721, September.
    6. Uchida, Masayuki & Yoshida, Nakahiro, 2013. "Quasi likelihood analysis of volatility and nondegeneracy of statistical random field," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2851-2876.
    7. Mitsuki Kobayashi & Yasutaka Shimizu, 2023. "Threshold estimation for jump-diffusions under small noise asymptotics," Statistical Inference for Stochastic Processes, Springer, vol. 26(2), pages 361-411, July.
    8. Michael Sørensen, 2008. "Efficient estimation for ergodic diffusions sampled at high frequency," CREATES Research Papers 2007-46, Department of Economics and Business Economics, Aarhus University.
    9. Dietz Hans M. & Kutoyants Yury A., 2003. "Parameter estimation for some non-recurrent solutions of SDE," Statistics & Risk Modeling, De Gruyter, vol. 21(1), pages 29-46, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:72:y:1997:i:2:p:205-219. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.