IDEAS home Printed from https://ideas.repec.org/a/bpj/strimo/v21y2003i1-2003p29-46n4.html
   My bibliography  Save this article

Parameter estimation for some non-recurrent solutions of SDE

Author

Listed:
  • Dietz Hans M.
  • Kutoyants Yury A.

Abstract

The present paper deals with the problem of parameter estimation for nonlinear stochastic differential equations with solution tending to infinity with time. It is shown that if the trend coefficient is asymptotically linear (like that of an Ornstein-Uhlenbeck process), then the maximum likelihood and trajectory fitting estimators are consistent and asymptotically mixing normal. That is, these estimators behave similar as in the case of a non-ergodic Ornstein-Uhlenbeck process.

Suggested Citation

  • Dietz Hans M. & Kutoyants Yury A., 2003. "Parameter estimation for some non-recurrent solutions of SDE," Statistics & Risk Modeling, De Gruyter, vol. 21(1), pages 29-46, January.
  • Handle: RePEc:bpj:strimo:v:21:y:2003:i:1/2003:p:29-46:n:4
    DOI: 10.1524/stnd.21.1.29.20321
    as

    Download full text from publisher

    File URL: https://doi.org/10.1524/stnd.21.1.29.20321
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1524/stnd.21.1.29.20321?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hans Dietz, 2001. "Asymptotic Behaviour of Trajectory Fitting Estimators for Certain Non-ergodic SDE," Statistical Inference for Stochastic Processes, Springer, vol. 4(3), pages 249-258, October.
    2. Nakahiro Yoshida, 1990. "Asymptotic behavior of M-estimator and related random field for diffusion process," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 42(2), pages 221-251, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yasutaka Shimizu, 2012. "Estimation of parameters for discretely observed diffusion processes with a variety of rates for information," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(3), pages 545-575, June.
    2. Yasutaka Shimizu, 2012. "Local asymptotic mixed normality for discretely observed non-recurrent Ornstein–Uhlenbeck processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(1), pages 193-211, February.
    3. Bercu, Bernard & Coutin, Laure & Savy, Nicolas, 2012. "Sharp large deviations for the non-stationary Ornstein–Uhlenbeck process," Stochastic Processes and their Applications, Elsevier, vol. 122(10), pages 3393-3424.
    4. Shimizu, Yasutaka, 2009. "Notes on drift estimation for certain non-recurrent diffusion processes from sampled data," Statistics & Probability Letters, Elsevier, vol. 79(20), pages 2200-2207, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qingpei Zang & Lixin Zhang, 2019. "Asymptotic Behaviour of the Trajectory Fitting Estimator for Reflected Ornstein–Uhlenbeck Processes," Journal of Theoretical Probability, Springer, vol. 32(1), pages 183-201, March.
    2. Nakahiro Yoshida, 2022. "Quasi-likelihood analysis and its applications," Statistical Inference for Stochastic Processes, Springer, vol. 25(1), pages 43-60, April.
    3. Quentin Clairon & Adeline Samson, 2022. "Optimal control for parameter estimation in partially observed hypoelliptic stochastic differential equations," Computational Statistics, Springer, vol. 37(5), pages 2471-2491, November.
    4. Kohei Chiba, 2020. "An M-estimator for stochastic differential equations driven by fractional Brownian motion with small Hurst parameter," Statistical Inference for Stochastic Processes, Springer, vol. 23(2), pages 319-353, July.
    5. Quentin Clairon & Adeline Samson, 2020. "Optimal control for estimation in partially observed elliptic and hypoelliptic linear stochastic differential equations," Statistical Inference for Stochastic Processes, Springer, vol. 23(1), pages 105-127, April.
    6. Sonja Rieder, 2012. "Robust parameter estimation for the Ornstein–Uhlenbeck process," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 21(4), pages 411-436, November.
    7. Iacus, Stefano Maria & Uchida, Masayuki & Yoshida, Nakahiro, 2009. "Parametric estimation for partially hidden diffusion processes sampled at discrete times," Stochastic Processes and their Applications, Elsevier, vol. 119(5), pages 1580-1600, May.
    8. Uchida, Masayuki, 2008. "Approximate martingale estimating functions for stochastic differential equations with small noises," Stochastic Processes and their Applications, Elsevier, vol. 118(9), pages 1706-1721, September.
    9. Abi-ayad, Ilham & Mourid, Tahar, 2018. "Parametric estimation for non recurrent diffusion processes," Statistics & Probability Letters, Elsevier, vol. 141(C), pages 96-102.
    10. Uchida, Masayuki & Yoshida, Nakahiro, 2013. "Quasi likelihood analysis of volatility and nondegeneracy of statistical random field," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2851-2876.
    11. Mitsuki Kobayashi & Yasutaka Shimizu, 2023. "Threshold estimation for jump-diffusions under small noise asymptotics," Statistical Inference for Stochastic Processes, Springer, vol. 26(2), pages 361-411, July.
    12. Michael Sørensen, 2008. "Efficient estimation for ergodic diffusions sampled at high frequency," CREATES Research Papers 2007-46, Department of Economics and Business Economics, Aarhus University.
    13. Jankunas, Andrius & Khasminskii, Rafail Z., 1997. "Estimation of parameters of linear homogeneous stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 72(2), pages 205-219, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:strimo:v:21:y:2003:i:1/2003:p:29-46:n:4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.