IDEAS home Printed from https://ideas.repec.org/a/spr/stmapp/v21y2012i4p411-436.html
   My bibliography  Save this article

Robust parameter estimation for the Ornstein–Uhlenbeck process

Author

Listed:
  • Sonja Rieder

Abstract

In this paper, we derive elementary M- and optimally robust asymptotic linear (AL)-estimates for the parameters of an Ornstein–Uhlenbeck process. Simulation and estimation of the process are already well-studied, see Iacus (Simulation and inference for stochastic differential equations. Springer, New York, 2008 ). However, in order to protect against outliers and deviations from the ideal law the formulation of suitable neighborhood models and a corresponding robustification of the estimators are necessary. As a measure of robustness, we consider the maximum asymptotic mean square error (maxasyMSE), which is determined by the influence curve (IC) of AL estimates. The IC represents the standardized influence of an individual observation on the estimator given the past. In a first step, we extend the method of M-estimation from Huber (Robust statistics. Wiley, New York, 1981 ). In a second step, we apply the general theory based on local asymptotic normality, AL estimates, and shrinking neighborhoods due to Kohl et al. (Stat Methods Appl 19:333–354, 2010 ), Rieder (Robust asymptotic statistics. Springer, New York, 1994 ), Rieder ( 2003 ), and Staab ( 1984 ). This leads to optimally robust ICs whose graph exhibits surprising behavior. In the end, we discuss the estimator construction, i.e. the problem of constructing an estimator from the family of optimal ICs. Therefore we carry out in our context the One-Step construction dating back to LeCam (Asymptotic methods in statistical decision theory. Springer, New York, 1969 ) and compare it by means of simulations with MLE and M-estimator. Copyright Springer-Verlag 2012

Suggested Citation

  • Sonja Rieder, 2012. "Robust parameter estimation for the Ornstein–Uhlenbeck process," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 21(4), pages 411-436, November.
  • Handle: RePEc:spr:stmapp:v:21:y:2012:i:4:p:411-436
    DOI: 10.1007/s10260-012-0195-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10260-012-0195-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10260-012-0195-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Swensen, Anders Rygh, 1985. "The asymptotic distribution of the likelihood ratio for autoregressive time series with a regression trend," Journal of Multivariate Analysis, Elsevier, vol. 16(1), pages 54-70, February.
    2. Christophe Croux & Catherine Dehon, 2010. "Influence functions of the Spearman and Kendall correlation measures," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 19(4), pages 497-515, November.
    3. Matthias Kohl & Peter Ruckdeschel & Helmut Rieder, 2010. "Infinitesimally Robust estimation in general smoothly parametrized models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 19(3), pages 333-354, August.
    4. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    5. Nora Muler & Victor J. Yohai, 2002. "Robust estimates for arch processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 23(3), pages 341-375, May.
    6. Nakahiro Yoshida, 1990. "Asymptotic behavior of M-estimator and related random field for diffusion process," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 42(2), pages 221-251, June.
    7. Marc Hallin & Christophe Koell & Bas Werker, 2000. "Optimal inference for discretely observed semiparametric Ornstein-Uhlenbeck processes," ULB Institutional Repository 2013/2097, ULB -- Universite Libre de Bruxelles.
    8. Mancini, Loriano & Ronchetti, Elvezio & Trojani, Fabio, 2005. "Optimal Conditionally Unbiased Bounded-Influence Inference in Dynamic Location and Scale Models," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 628-641, June.
    9. Tadeusz Bednarski, 2010. "Fréchet differentiability in statistical inference for time series," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 19(4), pages 517-528, November.
    10. Yuji Sakamoto & Nakahiro Yoshida, 1998. "Asymptotic Expansion of M ‐Estimator Over Wiener Space," Statistical Inference for Stochastic Processes, Springer, vol. 1(1), pages 85-103, January.
    11. Vasicek, Oldrich Alfonso, 1977. "Abstract: An Equilibrium Characterization of the Term Structure," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(4), pages 627-627, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marco Riani & Andrea Cerioli & Francesca Torti, 2014. "On consistency factors and efficiency of robust S-estimators," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 356-387, June.
    2. Hongchang Hu & Weifu Hu & Xinxin Yu, 2021. "Pseudo-maximum likelihood estimators in linear regression models with fractional time series," Statistical Papers, Springer, vol. 62(2), pages 639-659, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kristensen, Dennis, 2004. "Estimation in two classes of semiparametric diffusion models," LSE Research Online Documents on Economics 24739, London School of Economics and Political Science, LSE Library.
    2. Chuong Luong & Nikolai Dokuchaev, 2016. "Modeling Dependency Of Volatility On Sampling Frequency Via Delay Equations," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 11(02), pages 1-21, June.
    3. Ben S. Bernanke & Vincent R. Reinhart & Brian P. Sack, 2004. "Monetary Policy Alternatives at the Zero Bound: An Empirical Assessment," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 35(2), pages 1-100.
    4. Prakash Chakraborty & Kiseop Lee, 2022. "Bond Prices Under Information Asymmetry and a Short Rate with Instantaneous Feedback," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 613-634, June.
    5. Podolskij, Mark & Vetter, Mathias, 2009. "Bipower-type estimation in a noisy diffusion setting," Stochastic Processes and their Applications, Elsevier, vol. 119(9), pages 2803-2831, September.
    6. Foad Shokrollahi & Marcin Marcin Magdziarz, 2020. "Equity warrant pricing under subdiffusive fractional Brownian motion of the short rate," Papers 2007.12228, arXiv.org, revised Nov 2020.
    7. Gonçalo Jacinto & Patrícia A. Filipe & Carlos A. Braumann, 2022. "Profit Optimization of Cattle Growth with Variable Prices," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 1917-1952, September.
    8. Olivier Le Courtois, 2022. "On the Diversification of Fixed Income Assets," Risks, MDPI, vol. 10(2), pages 1-21, February.
    9. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    10. Patrick Saart & Jiti Gao & Nam Hyun Kim, 2014. "Semiparametric methods in nonlinear time series analysis: a selective review," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(1), pages 141-169, March.
    11. Moreno, Manuel & Novales, Alfonso & Platania, Federico, 2019. "Long-term swings and seasonality in energy markets," European Journal of Operational Research, Elsevier, vol. 279(3), pages 1011-1023.
    12. Frank De Jong & Joost Driessen & Antoon Pelsser, 2001. "Libor Market Models versus Swap Market Models for Pricing Interest Rate Derivatives: An Empirical Analysis," Review of Finance, European Finance Association, vol. 5(3), pages 201-237.
    13. João Nunes, 2011. "American options and callable bonds under stochastic interest rates and endogenous bankruptcy," Review of Derivatives Research, Springer, vol. 14(3), pages 283-332, October.
    14. Jorge Miguel Bravo, 2019. "Funding for longer lives. Retirement wallet and risk-sharing annuities," EKONOMIAZ. Revista vasca de Economía, Gobierno Vasco / Eusko Jaurlaritza / Basque Government, vol. 96(02), pages 268-291.
    15. Mahdavi, Mahnaz, 2008. "A comparison of international short-term rates under no arbitrage condition," Global Finance Journal, Elsevier, vol. 18(3), pages 303-318.
    16. Ilias Lekkos, 2003. "Cross‐sectional Restrictions on the Spot and Forward Term Structures of Interest Rates and Panel Unit Root Tests," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 30(5‐6), pages 799-828, June.
    17. Chang Shih-Chieh Bill & Lee Yen-Kuan, 2020. "Currency Uncertainty, Interest Guarantee, and Risk-Based Premiums in Life Insurance Guaranty Schemes," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 14(2), pages 1-30, July.
    18. Piotr Komański & Oskar Sokoliński, 2015. "Least-Squares Monte Carlo Simulation for Time Value of Options and Guarantees Calculation," Ekonomia journal, Faculty of Economic Sciences, University of Warsaw, vol. 41.
    19. Sascha Meyer & Willi Schwarz, 2003. "A PDE based Implementation of the Hull&White Model for Cashflow Derivatives," Computational Statistics, Springer, vol. 18(3), pages 417-434, September.
    20. Chen, Bin & Song, Zhaogang, 2013. "Testing whether the underlying continuous-time process follows a diffusion: An infinitesimal operator-based approach," Journal of Econometrics, Elsevier, vol. 173(1), pages 83-107.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:21:y:2012:i:4:p:411-436. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.