IDEAS home Printed from https://ideas.repec.org/a/spr/stmapp/v21y2012i4p411-436.html
   My bibliography  Save this article

Robust parameter estimation for the Ornstein–Uhlenbeck process

Author

Listed:
  • Sonja Rieder

Abstract

In this paper, we derive elementary M- and optimally robust asymptotic linear (AL)-estimates for the parameters of an Ornstein–Uhlenbeck process. Simulation and estimation of the process are already well-studied, see Iacus (Simulation and inference for stochastic differential equations. Springer, New York, 2008 ). However, in order to protect against outliers and deviations from the ideal law the formulation of suitable neighborhood models and a corresponding robustification of the estimators are necessary. As a measure of robustness, we consider the maximum asymptotic mean square error (maxasyMSE), which is determined by the influence curve (IC) of AL estimates. The IC represents the standardized influence of an individual observation on the estimator given the past. In a first step, we extend the method of M-estimation from Huber (Robust statistics. Wiley, New York, 1981 ). In a second step, we apply the general theory based on local asymptotic normality, AL estimates, and shrinking neighborhoods due to Kohl et al. (Stat Methods Appl 19:333–354, 2010 ), Rieder (Robust asymptotic statistics. Springer, New York, 1994 ), Rieder ( 2003 ), and Staab ( 1984 ). This leads to optimally robust ICs whose graph exhibits surprising behavior. In the end, we discuss the estimator construction, i.e. the problem of constructing an estimator from the family of optimal ICs. Therefore we carry out in our context the One-Step construction dating back to LeCam (Asymptotic methods in statistical decision theory. Springer, New York, 1969 ) and compare it by means of simulations with MLE and M-estimator. Copyright Springer-Verlag 2012

Suggested Citation

  • Sonja Rieder, 2012. "Robust parameter estimation for the Ornstein–Uhlenbeck process," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 21(4), pages 411-436, November.
  • Handle: RePEc:spr:stmapp:v:21:y:2012:i:4:p:411-436
    DOI: 10.1007/s10260-012-0195-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10260-012-0195-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10260-012-0195-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Swensen, Anders Rygh, 1985. "The asymptotic distribution of the likelihood ratio for autoregressive time series with a regression trend," Journal of Multivariate Analysis, Elsevier, vol. 16(1), pages 54-70, February.
    2. Marc Hallin & Christophe Koell & Bas Werker, 2000. "Optimal inference for discretely observed semiparametric Ornstein-Uhlenbeck processes," ULB Institutional Repository 2013/2097, ULB -- Universite Libre de Bruxelles.
    3. Mancini, Loriano & Ronchetti, Elvezio & Trojani, Fabio, 2005. "Optimal Conditionally Unbiased Bounded-Influence Inference in Dynamic Location and Scale Models," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 628-641, June.
    4. Croux, C. & Dehon, C., 2010. "Influence Functions of the Spearman and Kendall Correlation Measures," Other publications TiSEM 5e8ee766-ee1e-4d6e-b035-6, Tilburg University, School of Economics and Management.
    5. Matthias Kohl & Peter Ruckdeschel & Helmut Rieder, 2010. "Infinitesimally Robust estimation in general smoothly parametrized models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 19(3), pages 333-354, August.
    6. Christophe Croux & Catherine Dehon, 2010. "Influence functions of the Spearman and Kendall correlation measures," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 19(4), pages 497-515, November.
    7. Tadeusz Bednarski, 2010. "Fréchet differentiability in statistical inference for time series," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 19(4), pages 517-528, November.
    8. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    9. Yuji Sakamoto & Nakahiro Yoshida, 1998. "Asymptotic Expansion of M ‐Estimator Over Wiener Space," Statistical Inference for Stochastic Processes, Springer, vol. 1(1), pages 85-103, January.
    10. Vasicek, Oldrich Alfonso, 1977. "Abstract: An Equilibrium Characterization of the Term Structure," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(4), pages 627-627, November.
    11. Nora Muler & Victor J. Yohai, 2002. "Robust estimates for arch processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 23(3), pages 341-375, May.
    12. Nakahiro Yoshida, 1990. "Asymptotic behavior of M-estimator and related random field for diffusion process," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 42(2), pages 221-251, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marco Riani & Andrea Cerioli & Francesca Torti, 2014. "On consistency factors and efficiency of robust S-estimators," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 356-387, June.
    2. Hongchang Hu & Weifu Hu & Xinxin Yu, 2021. "Pseudo-maximum likelihood estimators in linear regression models with fractional time series," Statistical Papers, Springer, vol. 62(2), pages 639-659, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kristensen, Dennis, 2004. "Estimation in two classes of semiparametric diffusion models," LSE Research Online Documents on Economics 24739, London School of Economics and Political Science, LSE Library.
    2. Camilla LandÊn, 2000. "Bond pricing in a hidden Markov model of the short rate," Finance and Stochastics, Springer, vol. 4(4), pages 371-389.
    3. Álvarez Echeverría Francisco & López Sarabia Pablo & Venegas Martínez Francisco, 2012. "Valuación financiera de proyectos de inversión en nuevas tecnologías con opciones reales," Contaduría y Administración, Accounting and Management, vol. 57(3), pages 115-145, julio-sep.
    4. Matsumura, Marco & Moreira, Ajax & Vicente, José, 2011. "Forecasting the yield curve with linear factor models," International Review of Financial Analysis, Elsevier, vol. 20(5), pages 237-243.
    5. Lin, Bing-Huei, 1999. "Fitting the term structure of interest rates for Taiwanese government bonds," Journal of Multinational Financial Management, Elsevier, vol. 9(3-4), pages 331-352, November.
    6. Gollier, Christian, 2002. "Time Horizon and the Discount Rate," Journal of Economic Theory, Elsevier, vol. 107(2), pages 463-473, December.
    7. Tucker, A. L. & Wei, J. Z., 1998. "Valuation of LIBOR-Contingent FX options," Journal of International Money and Finance, Elsevier, vol. 17(2), pages 249-277, April.
    8. Chuong Luong & Nikolai Dokuchaev, 2016. "Modeling Dependency Of Volatility On Sampling Frequency Via Delay Equations," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 11(02), pages 1-21, June.
    9. Yang, Nian & Chen, Nan & Wan, Xiangwei, 2019. "A new delta expansion for multivariate diffusions via the Itô-Taylor expansion," Journal of Econometrics, Elsevier, vol. 209(2), pages 256-288.
    10. Kimmel, Robert L., 2004. "Modeling the term structure of interest rates: A new approach," Journal of Financial Economics, Elsevier, vol. 72(1), pages 143-183, April.
    11. Ben S. Bernanke & Vincent R. Reinhart & Brian P. Sack, 2004. "Monetary Policy Alternatives at the Zero Bound: An Empirical Assessment," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 35(2), pages 1-100.
    12. Prakash Chakraborty & Kiseop Lee, 2022. "Bond Prices Under Information Asymmetry and a Short Rate with Instantaneous Feedback," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 613-634, June.
    13. Podolskij, Mark & Vetter, Mathias, 2009. "Bipower-type estimation in a noisy diffusion setting," Stochastic Processes and their Applications, Elsevier, vol. 119(9), pages 2803-2831, September.
    14. Issler, João Victor, 1995. "Estimating the term structure of volatility and fixed income derivative pricing," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 272, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
    15. Foad Shokrollahi & Marcin Marcin Magdziarz, 2020. "Equity warrant pricing under subdiffusive fractional Brownian motion of the short rate," Papers 2007.12228, arXiv.org, revised Nov 2020.
    16. Allan Jonathan da Silva & Jack Baczynskiy & José Valentim M. Vicente, 2015. "A Discrete Monitoring Method for Pricing Asian Interest Rate Options," Working Papers Series 409, Central Bank of Brazil, Research Department.
    17. Huse, Cristian, 2011. "Term structure modelling with observable state variables," Journal of Banking & Finance, Elsevier, vol. 35(12), pages 3240-3252.
    18. Gonçalo Jacinto & Patrícia A. Filipe & Carlos A. Braumann, 2022. "Profit Optimization of Cattle Growth with Variable Prices," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 1917-1952, September.
    19. Levendorskii, Sergei, 2004. "Consistency conditions for affine term structure models," Stochastic Processes and their Applications, Elsevier, vol. 109(2), pages 225-261, February.
    20. Olivier Le Courtois, 2022. "On the Diversification of Fixed Income Assets," Risks, MDPI, vol. 10(2), pages 1-21, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:21:y:2012:i:4:p:411-436. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.