IDEAS home Printed from https://ideas.repec.org/p/bep/unimip/unimi-1042.html
   My bibliography  Save this paper

Parametric estimation for partially hidden diffusion processes sampled at discrete times

Author

Listed:
  • Stefano Iacus

    (Department of Economics, Business and Statistics, University of Milan, IT)

  • Masayuki Uchida

    (Departement of Mathematical Sciences, Faculty of Mathematics, Kyushu University, Ropponmatsu, Fukuoka 810-8560, Japan)

  • Nakahiro Yoshida

    (Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8914 Japan)

Abstract

A one dimensional diffusion process $X=\{X_t, 0\leq t \leq T\}$ is observed only when its path lies over some threshold $\tau$. On the basis of the observable part of the trajectory, the problem is to estimate finite dimensional parameter in both drift and diffusion coefficient under a discrete sampling scheme. It is assumed that the sampling occurs at regularly spaced times intervals of length $h_n$ such that $h_n\cdot n =T$. The asymptotic is considered as $T\to\infty$, $n\to\infty$, $n h_n^2\to 0$. Consistency and asymptotic normality for estimators of parameters in both drift and diffusion coefficient is proved.

Suggested Citation

  • Stefano Iacus & Masayuki Uchida & Nakahiro Yoshida, 2006. "Parametric estimation for partially hidden diffusion processes sampled at discrete times," UNIMI - Research Papers in Economics, Business, and Statistics unimi-1042, Universitá degli Studi di Milano.
  • Handle: RePEc:bep:unimip:unimi-1042
    Note: oai:cdlib1:unimi-1042
    as

    Download full text from publisher

    File URL: http://services.bepress.com/unimi/statistics/art18
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Paul Fearnhead & Omiros Papaspiliopoulos & Gareth O. Roberts, 2008. "Particle filters for partially observed diffusions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(4), pages 755-777, September.
    2. Yong Zeng, 2003. "A Partially Observed Model for Micromovement of Asset Prices with Bayes Estimation via Filtering," Mathematical Finance, Wiley Blackwell, vol. 13(3), pages 411-444, July.
    3. Yoshida, Nakahiro, 1992. "Estimation for diffusion processes from discrete observation," Journal of Multivariate Analysis, Elsevier, vol. 41(2), pages 220-242, May.
    4. Stefano M. Iacus & Ilia Negri, 2003. "Estimating unobservable signal by Markovian noise induction," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 12(2), pages 153-167, December.
    5. Nakahiro Yoshida, 1990. "Asymptotic behavior of M-estimator and related random field for diffusion process," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 42(2), pages 221-251, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Emmanuel Gobet & Gustaw Matulewicz, 2017. "Parameter estimation of Ornstein–Uhlenbeck process generating a stochastic graph," Statistical Inference for Stochastic Processes, Springer, vol. 20(2), pages 211-235, July.
    2. Shen, Leyi & Xia, Xiaoyu & Yan, Litan, 2022. "Least squares estimation for the linear self-repelling diffusion driven by α-stable motions," Statistics & Probability Letters, Elsevier, vol. 181(C).
    3. Yoshida, Nakahiro, 2013. "Martingale expansion in mixed normal limit," Stochastic Processes and their Applications, Elsevier, vol. 123(3), pages 887-933.
    4. A. Gregorio & S. M. Iacus, 2019. "Empirical $$L^2$$ L 2 -distance test statistics for ergodic diffusions," Statistical Inference for Stochastic Processes, Springer, vol. 22(2), pages 233-261, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nakahiro Yoshida, 2022. "Quasi-likelihood analysis and its applications," Statistical Inference for Stochastic Processes, Springer, vol. 25(1), pages 43-60, April.
    2. Uchida, Masayuki, 2008. "Approximate martingale estimating functions for stochastic differential equations with small noises," Stochastic Processes and their Applications, Elsevier, vol. 118(9), pages 1706-1721, September.
    3. Uchida, Masayuki & Yoshida, Nakahiro, 2013. "Quasi likelihood analysis of volatility and nondegeneracy of statistical random field," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2851-2876.
    4. Michael Sørensen, 2008. "Efficient estimation for ergodic diffusions sampled at high frequency," CREATES Research Papers 2007-46, Department of Economics and Business Economics, Aarhus University.
    5. Konstantin P. Belyaev & Andrey K. Gorshenin & Victor Yu. Korolev & Anastasiia A. Osipova, 2024. "Comparison of Statistical Approaches for Reconstructing Random Coefficients in the Problem of Stochastic Modeling of Air–Sea Heat Flux Increments," Mathematics, MDPI, vol. 12(2), pages 1-21, January.
    6. Large, Jeremy, 2011. "Estimating quadratic variation when quoted prices change by a constant increment," Journal of Econometrics, Elsevier, vol. 160(1), pages 2-11, January.
    7. Mamatzakis, Emmanuel C. & Tsionas, Mike G., 2021. "Making inference of British household's happiness efficiency: A Bayesian latent model," European Journal of Operational Research, Elsevier, vol. 294(1), pages 312-326.
    8. Shoji, Isao, 1997. "A note on asymptotic properties of the estimator derived from the Euler method for diffusion processes at discrete times," Statistics & Probability Letters, Elsevier, vol. 36(2), pages 153-159, December.
    9. Zhiqiang Li & Jie Xiong, 2015. "Stability of the filter with Poisson observations," Statistical Inference for Stochastic Processes, Springer, vol. 18(3), pages 293-313, October.
    10. De Gregorio, A. & Iacus, S.M., 2013. "On a family of test statistics for discretely observed diffusion processes," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 292-316.
    11. Jianqing Fan, 2004. "A selective overview of nonparametric methods in financial econometrics," Papers math/0411034, arXiv.org.
    12. Qinwen Zhu & Hui Liu & Chengfeng Sun, 2019. "Edgeworth Expansion For The Distribution Of The Maximum Likelihood Estimate In The Vasicek Model," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 14(01), pages 1-26, March.
    13. Diks, Cees & Wang, Juanxi, 2016. "Can a stochastic cusp catastrophe model explain housing market crashes?," Journal of Economic Dynamics and Control, Elsevier, vol. 69(C), pages 68-88.
    14. Stan Hurn & J.Jeisman & K.A. Lindsay, 2006. "Seeing the Wood for the Trees: A Critical Evaluation of Methods to Estimate the Parameters of Stochastic Differential Equations. Working paper #2," NCER Working Paper Series 2, National Centre for Econometric Research.
    15. Chiara Amorino & Arnaud Gloter, 2020. "Contrast function estimation for the drift parameter of ergodic jump diffusion process," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(2), pages 279-346, June.
    16. Hermann Singer, 2011. "Continuous-discrete state-space modeling of panel data with nonlinear filter algorithms," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(4), pages 375-413, December.
    17. Yuma Uehara, 2023. "Bootstrap method for misspecified ergodic Lévy driven stochastic differential equation models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(4), pages 533-565, August.
    18. James Hodgson & Adam M. Johansen & Murray Pollock, 2022. "Unbiased Simulation of Rare Events in Continuous Time," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 2123-2148, September.
    19. Shoji, Isao, 2013. "Filtering for partially observed diffusion and its applications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 4966-4976.
    20. Kou Fujimori, 2019. "The Dantzig selector for a linear model of diffusion processes," Statistical Inference for Stochastic Processes, Springer, vol. 22(3), pages 475-498, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bep:unimip:unimi-1042. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/damilit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.