IDEAS home Printed from https://ideas.repec.org/a/spr/sistpr/v17y2014i1p19-49.html
   My bibliography  Save this article

Second-order continuous-time non-stationary Gaussian autoregression

Author

Listed:
  • N. Lin
  • S. Lototsky

Abstract

The objective of the paper is to identify and investigate all possible types of asymptotic behavior for the maximum likelihood estimators of the unknown parameters in the second-order linear stochastic ordinary differential equation driven by Gaussian white noise. The emphasis is on the non-ergodic case, when the roots of the corresponding characteristic equation are not both in the left half-plane. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • N. Lin & S. Lototsky, 2014. "Second-order continuous-time non-stationary Gaussian autoregression," Statistical Inference for Stochastic Processes, Springer, vol. 17(1), pages 19-49, April.
  • Handle: RePEc:spr:sistpr:v:17:y:2014:i:1:p:19-49
    DOI: 10.1007/s11203-014-9090-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11203-014-9090-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11203-014-9090-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Greenwood, P. E. & Wefelmeyer, W., 1993. "Asymptotic minimax results for stochastic process families with critical points," Stochastic Processes and their Applications, Elsevier, vol. 44(1), pages 107-116, January.
    2. Jankunas, Andrius & Khasminskii, Rafail Z., 1997. "Estimation of parameters of linear homogeneous stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 72(2), pages 205-219, December.
    3. Jeganathan, P., 1995. "Some Aspects of Asymptotic Theory with Applications to Time Series Models," Econometric Theory, Cambridge University Press, vol. 11(5), pages 818-887, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ana Prior & Marina Kleptsyna & Paula Milheiro-Oliveira, 2017. "On maximum likelihood estimation of the drift matrix of a degenerated O–U process," Statistical Inference for Stochastic Processes, Springer, vol. 20(1), pages 57-78, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gushchin, Alexander A. & Kuchler, Uwe, 1997. "Asymptotic inference for a linear stochastic differential equation with time delay," SFB 373 Discussion Papers 1997,43, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    2. Galtchouk, Leonid & Konev, Victor, 2010. "On asymptotic normality of sequential LS-estimate for unstable autoregressive process AR(2)," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2616-2636, November.
    3. Pentti Saikkonen & Rickard Sandberg, 2016. "Testing for a Unit Root in Noncausal Autoregressive Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(1), pages 99-125, January.
    4. Werker, Bas J.M. & Zhou, B., 2022. "Semiparametric testing with highly persistent predictors," Other publications TiSEM 2974ce9c-97c1-44cd-9331-0, Tilburg University, School of Economics and Management.
    5. Aït-Sahalia, Yacine & Park, Joon Y., 2016. "Bandwidth selection and asymptotic properties of local nonparametric estimators in possibly nonstationary continuous-time models," Journal of Econometrics, Elsevier, vol. 192(1), pages 119-138.
    6. Drost, F.C. & Klaasens, C.A.J. & Werker, B.J.M., 1994. "Adaptive Estimation in Time Series Models," Papers 9488, Tilburg - Center for Economic Research.
    7. Werner Ploberger & Peter C.B. Phillips, 1998. "Rissanen's Theorem and Econometric Time Series," Cowles Foundation Discussion Papers 1197, Cowles Foundation for Research in Economics, Yale University.
    8. Douglas J. Hodgson & Oliver Linton & Keith Vorkink, 2002. "Testing the capital asset pricing model efficiently under elliptical symmetry: a semiparametric approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(6), pages 617-639, December.
    9. Mishura, Yuliya, 2014. "Standard maximum likelihood drift parameter estimator in the homogeneous diffusion model is always strongly consistent," Statistics & Probability Letters, Elsevier, vol. 86(C), pages 24-29.
    10. Oliver Linton & Douglas Steigerwald, 2000. "Adaptive testing in arch models," Econometric Reviews, Taylor & Francis Journals, vol. 19(2), pages 145-174.
    11. Ploberger, Werner & Phillips, Peter C.B., 2012. "Optimal estimation under nonstandard conditions," Journal of Econometrics, Elsevier, vol. 169(2), pages 258-265.
    12. Werker, Bas J.M. & Zhou, Bo, 2022. "Semiparametric testing with highly persistent predictors," Journal of Econometrics, Elsevier, vol. 227(2), pages 347-370.
    13. Yiguo Sun, 2014. "Semi-Parametric Estimation Of Linear Cointegrating Models With Nonlinear Contemporaneous Endogeneity," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(5), pages 437-461, August.
    14. Bas Werker & Bo Zhou, 2020. "Semiparametric Testing with Highly Persistent Predictors," Papers 2009.08291, arXiv.org.
    15. Andreou, E. & Werker, B.J.M., 2004. "An Alternative Asymptotic Analysis of Residual-Based Statistics," Other publications TiSEM 93fe16c1-9f21-4dab-9b73-4, Tilburg University, School of Economics and Management.
    16. Marc Hallin & Catherine Vermandele & Bas J. M. Werker, 2008. "Semiparametrically efficient inference based on signs and ranks for median‐restricted models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(2), pages 389-412, April.
    17. Dominique Dehay, 2015. "Parameter maximum likelihood estimation problem for time periodic modulated drift Ornstein Uhlenbeck processes," Statistical Inference for Stochastic Processes, Springer, vol. 18(1), pages 69-98, April.
    18. Francq, Christian & Zakoian, Jean-Michel, 2023. "Local Asymptotic Normality Of General Conditionally Heteroskedastic And Score-Driven Time-Series Models," Econometric Theory, Cambridge University Press, vol. 39(5), pages 1067-1092, October.
    19. Dominique Guegan & Bertrand K. Hassani, 2019. "Risk Measurement," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-02119256, HAL.
    20. Michael Jansson, 2008. "Semiparametric Power Envelopes for Tests of the Unit Root Hypothesis," Econometrica, Econometric Society, vol. 76(5), pages 1103-1142, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sistpr:v:17:y:2014:i:1:p:19-49. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.