IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v175y2024ics0304414924000978.html
   My bibliography  Save this article

Deviation inequality for Banach-valued orthomartingales

Author

Listed:
  • Giraudo, Davide

Abstract

We show a deviation inequality inequalities for multi-indexed martingale We then provide applications to kernel regression for random fields and rates in the law of large numbers for orthomartingale difference random fields.

Suggested Citation

  • Giraudo, Davide, 2024. "Deviation inequality for Banach-valued orthomartingales," Stochastic Processes and their Applications, Elsevier, vol. 175(C).
  • Handle: RePEc:eee:spapps:v:175:y:2024:i:c:s0304414924000978
    DOI: 10.1016/j.spa.2024.104391
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414924000978
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2024.104391?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohamed Machkouri, 2007. "Nonparametric Regression Estimation for Random Fields in a Fixed-Design," Statistical Inference for Stochastic Processes, Springer, vol. 10(1), pages 29-47, January.
    2. Volný, Dalibor, 2019. "On limit theorems for fields of martingale differences," Stochastic Processes and their Applications, Elsevier, vol. 129(3), pages 841-859.
    3. Klicnarová, Jana & Volný, Dalibor & Wang, Yizao, 2016. "Limit theorems for weighted Bernoulli random fields under Hannan’s condition," Stochastic Processes and their Applications, Elsevier, vol. 126(6), pages 1819-1838.
    4. Emmanuel Rio, 2009. "Moment Inequalities for Sums of Dependent Random Variables under Projective Conditions," Journal of Theoretical Probability, Springer, vol. 22(1), pages 146-163, March.
    5. Magda Peligrad & Dalibor Volný, 2020. "Quenched Invariance Principles for Orthomartingale-Like Sequences," Journal of Theoretical Probability, Springer, vol. 33(3), pages 1238-1265, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan, Xiequan & Alquier, Pierre & Doukhan, Paul, 2022. "Deviation inequalities for stochastic approximation by averaging," Stochastic Processes and their Applications, Elsevier, vol. 152(C), pages 452-485.
    2. Victor Chernozhukov & Ivan Fernandez-Val & Chen Huang & Weining Wang, 2024. "Arellano-bond lasso estimator for dynamic linear panel models," CeMMAP working papers 09/24, Institute for Fiscal Studies.
    3. Qizhao Chen & Morgane Austern & Vasilis Syrgkanis, 2023. "Inference on Optimal Dynamic Policies via Softmax Approximation," Papers 2303.04416, arXiv.org, revised Dec 2023.
    4. Likai Chen & Georg Keilbar & Liangjun Su & Weining Wang, 2023. "Inference on many jumps in nonparametric panel regression models," Papers 2312.01162, arXiv.org, revised Aug 2024.
    5. Xu, Haotian & Wang, Daren & Zhao, Zifeng & Yu, Yi, 2022. "Change point inference in high-dimensional regression models under temporal dependence," LIDAM Discussion Papers ISBA 2022027, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    6. Hongxia Wang & Jinde Wang, 2009. "Estimation of the trend function for spatio-temporal models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(5), pages 567-588.
    7. Jiaqi Li & Likai Chen & Kun Ho Kim & Tianwei Zhou, 2022. "Simultaneous Inference of a Partially Linear Model in Time Series," Papers 2212.10359, arXiv.org, revised Sep 2023.
    8. Magda Peligrad & Dalibor Volný, 2020. "Quenched Invariance Principles for Orthomartingale-Like Sequences," Journal of Theoretical Probability, Springer, vol. 33(3), pages 1238-1265, September.
    9. Qizhao Chen & Vasilis Syrgkanis & Morgane Austern, 2022. "Debiased Machine Learning without Sample-Splitting for Stable Estimators," Papers 2206.01825, arXiv.org, revised Nov 2022.
    10. Doukhan, Paul & Fan, Xiequan & Gao, Zhi-Qiang, 2023. "Cramér moderate deviations for a supercritical Galton–Watson process," Statistics & Probability Letters, Elsevier, vol. 192(C).
    11. V. Yu. Bogdanskii & O. I. Klesov & I. Molchanov, 2021. "Uniform Strong Law of Large Numbers," Methodology and Computing in Applied Probability, Springer, vol. 23(2), pages 461-470, June.
    12. Peligrad, Magda & Sang, Hailin & Xiao, Yimin & Yang, Guangyu, 2022. "Limit theorems for linear random fields with innovations in the domain of attraction of a stable law," Stochastic Processes and their Applications, Elsevier, vol. 150(C), pages 596-621.
    13. El Machkouri, Mohamed & Es-Sebaiy, Khalifa & Ouassou, Idir, 2017. "On local linear regression for strongly mixing random fields," Journal of Multivariate Analysis, Elsevier, vol. 156(C), pages 103-115.
    14. Yuliana Linke & Igor Borisov & Pavel Ruzankin & Vladimir Kutsenko & Elena Yarovaya & Svetlana Shalnova, 2024. "Multivariate Universal Local Linear Kernel Estimators in Nonparametric Regression: Uniform Consistency," Mathematics, MDPI, vol. 12(12), pages 1-23, June.
    15. Francisco José Navarro-González & Yolanda Villacampa & Mónica Cortés-Molina & Salvador Ivorra, 2020. "Numerical Non-Linear Modelling Algorithm Using Radial Kernels on Local Mesh Support," Mathematics, MDPI, vol. 8(9), pages 1-27, September.
    16. Sophie Dabo-Niang & Camille Ternynck & Anne-Françoise Yao, 2016. "Nonparametric prediction of spatial multivariate data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(2), pages 428-458, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:175:y:2024:i:c:s0304414924000978. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.