IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v162y2023icp218-248.html
   My bibliography  Save this article

Birth Death Swap population in random environment and aggregation with two timescales

Author

Listed:
  • Kaakai, Sarah
  • El Karoui, Nicole

Abstract

This paper deals with the stochastic modeling of a class of heterogeneous population in random environment, structured by discrete subgroups, and called birth–death–swap. In addition to demographic events modifying the population size, swap events, i.e. moves between subgroups, occur in the population. Event intensities are random functionals of the population. In the first part, we show that the complexity of the problem is significantly reduced by modeling the jump measure of the population as a multivariate counting process. This process is defined as the solution of a stochastic differential system with random coefficients, driven by a multivariate Poisson random measure. The solution is obtained under weak assumptions, by the thinning of a strongly dominating point process generated by the same Poisson measure. This key construction relies on a general strong comparison result, of independent interest.

Suggested Citation

  • Kaakai, Sarah & El Karoui, Nicole, 2023. "Birth Death Swap population in random environment and aggregation with two timescales," Stochastic Processes and their Applications, Elsevier, vol. 162(C), pages 218-248.
  • Handle: RePEc:eee:spapps:v:162:y:2023:i:c:p:218-248
    DOI: 10.1016/j.spa.2023.04.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414923000911
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2023.04.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nicole El Karoui & Kaouther Hadji & Sarah Kaakai, 2021. "Simulating long-term impacts of mortality shocks: learning from the cholera pandemic," Papers 2111.08338, arXiv.org.
    2. Booth, H. & Tickle, L., 2008. "Mortality Modelling and Forecasting: a Review of Methods," Annals of Actuarial Science, Cambridge University Press, vol. 3(1-2), pages 3-43, September.
    3. Song, Li-Peng & Jin, Zhen & Sun, Gui-Quan, 2011. "Modeling and analyzing of botnet interactions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(2), pages 347-358.
    4. Rolski, T. & Szekli, R., 1991. "Stochastic ordering and thinning of point processes," Stochastic Processes and their Applications, Elsevier, vol. 37(2), pages 299-312, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:hum:wpaper:sfb649dp2009-008 is not listed on IDEAS
    2. Lanza Queiroz, Bernardo & Lobo Alves Ferreira, Matheus, 2021. "The evolution of labor force participation and the expected length of retirement in Brazil," The Journal of the Economics of Ageing, Elsevier, vol. 18(C).
    3. Rob Hyndman & Heather Booth & Farah Yasmeen, 2013. "Coherent Mortality Forecasting: The Product-Ratio Method With Functional Time Series Models," Demography, Springer;Population Association of America (PAA), vol. 50(1), pages 261-283, February.
    4. Navarro-García, Manuel & Guerrero, Vanesa & Durban, María, 2023. "On constrained smoothing and out-of-range prediction using P-splines: A conic optimization approach," Applied Mathematics and Computation, Elsevier, vol. 441(C).
    5. Jonas Hirz & Uwe Schmock & Pavel V. Shevchenko, 2017. "Actuarial Applications and Estimation of Extended CreditRisk+," Risks, MDPI, vol. 5(2), pages 1-29, March.
    6. Niels Haldrup & Carsten P. T. Rosenskjold, 2019. "A Parametric Factor Model of the Term Structure of Mortality," Econometrics, MDPI, vol. 7(1), pages 1-22, March.
    7. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    8. Jean-Charles Croix & Frédéric Planchet & Pierre-Emmanuel Thérond, 2013. "Mortality : a statistical approach to detect model misspecification," Post-Print hal-00839339, HAL.
    9. de Jong, Piet & Tickle, Leonie & Xu, Jianhui, 2020. "A more meaningful parameterization of the Lee–Carter model," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 1-8.
    10. Salvatore Tedesco & Martina Andrulli & Markus Åkerlund Larsson & Daniel Kelly & Antti Alamäki & Suzanne Timmons & John Barton & Joan Condell & Brendan O’Flynn & Anna Nordström, 2021. "Comparison of Machine Learning Techniques for Mortality Prediction in a Prospective Cohort of Older Adults," IJERPH, MDPI, vol. 18(23), pages 1-18, December.
    11. Johann Fuchs & Doris Söhnlein & Brigitte Weber & Enzo Weber, 2018. "Stochastic Forecasting of Labor Supply and Population: An Integrated Model," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 37(1), pages 33-58, February.
    12. Geng Niu & Bertrand Melenberg, 2014. "Trends in Mortality Decrease and Economic Growth," Demography, Springer;Population Association of America (PAA), vol. 51(5), pages 1755-1773, October.
    13. Valeria D’Amato & Emilia Di Lorenzo & Steven Haberman & Maria Russolillo & Marilena Sibillo, 2011. "The Poisson Log-Bilinear Lee-Carter Model," North American Actuarial Journal, Taylor & Francis Journals, vol. 15(2), pages 315-333.
    14. Li, Han & Li, Hong & Lu, Yang & Panagiotelis, Anastasios, 2019. "A forecast reconciliation approach to cause-of-death mortality modeling," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 122-133.
    15. Francesca Perla & Salvatore Scognamiglio, 2023. "Locally-coherent multi-population mortality modelling via neural networks," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 46(1), pages 157-176, June.
    16. repec:hum:wpaper:sfb649dp2009-015 is not listed on IDEAS
    17. Ahbab Mohammad Fazle Rabbi & Stefano Mazzuco, 2021. "Mortality Forecasting with the Lee–Carter Method: Adjusting for Smoothing and Lifespan Disparity," European Journal of Population, Springer;European Association for Population Studies, vol. 37(1), pages 97-120, March.
    18. Marie-Pier Bergeron-Boucher & Søren Kjærgaard & James E. Oeppen & James W. Vaupel, 2019. "The impact of the choice of life table statistics when forecasting mortality," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 41(43), pages 1235-1268.
    19. Antonio Abatemarco & Maria Russolillo, 2023. "The Dynamics of the Gender Gap at Retirement in Italy: Evidence from SHARE," Italian Economic Journal: A Continuation of Rivista Italiana degli Economisti and Giornale degli Economisti, Springer;Società Italiana degli Economisti (Italian Economic Association), vol. 9(2), pages 445-473, July.
    20. Han Li & Colin O’Hare, 2019. "Mortality Forecasting: How Far Back Should We Look in Time?," Risks, MDPI, vol. 7(1), pages 1-15, February.
    21. Benedetta Frassi & Fabio Pammolli & Luca Regis, 2017. "The potential costs of Longevity Risk on Public Pensions. Evidence from Italian data," Working Papers 01/2017, IMT School for Advanced Studies Lucca, revised Jan 2017.
    22. Kung, Ko-Lun & Hsieh, Ming-Hua & Peng, Jin-Lung & Tsai, Chenghsien Jason & Wang, Jennifer L., 2021. "Explaining the risk premiums of life settlements," Pacific-Basin Finance Journal, Elsevier, vol. 68(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:162:y:2023:i:c:p:218-248. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.