IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v158y2023icp282-314.html
   My bibliography  Save this article

Moderate deviation principles for kernel estimator of invariant density in bifurcating Markov chains

Author

Listed:
  • Bitseki Penda, S. Valère

Abstract

Bitseki and Delmas (2022) have studied recently the central limit theorem for kernel estimator of invariant density in bifurcating Markov chains. We complete their work by proving a moderate deviation principle for this estimator. Unlike the work of Bitseki and Gorgui (2022), it is interesting to see that the distinction of the two regimes disappears and that we are able to get moderate deviation principle for large values of the ergodic rate. It is also interesting and surprising to see that for moderate deviation principle, the ergodic rate begins to have an impact on the choice of the bandwidth for values smaller than in the context of central limit theorem studied by Bitseki and Delmas (2022).

Suggested Citation

  • Bitseki Penda, S. Valère, 2023. "Moderate deviation principles for kernel estimator of invariant density in bifurcating Markov chains," Stochastic Processes and their Applications, Elsevier, vol. 158(C), pages 282-314.
  • Handle: RePEc:eee:spapps:v:158:y:2023:i:c:p:282-314
    DOI: 10.1016/j.spa.2023.01.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414923000042
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2023.01.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S. Valère Bitseki Penda & Angelina Roche, 2020. "Local bandwidth selection for kernel density estimation in a bifurcating Markov chain model," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 32(3), pages 535-562, July.
    2. George Roussas, 1969. "Nonparametric estimation in Markov processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 21(1), pages 73-87, December.
    3. S. Valère Bitseki Penda & Adélaïde Olivier, 2017. "Autoregressive functions estimation in nonlinear bifurcating autoregressive models," Statistical Inference for Stochastic Processes, Springer, vol. 20(2), pages 179-210, July.
    4. Fuqing Gao, 2003. "Moderate Deviations and Large Deviations for Kernel Density Estimators," Journal of Theoretical Probability, Springer, vol. 16(2), pages 401-418, April.
    5. Hoffmann, Marc & Marguet, Aline, 2019. "Statistical estimation in a randomly structured branching population," Stochastic Processes and their Applications, Elsevier, vol. 129(12), pages 5236-5277.
    6. Bitseki Penda, S. Valère & Olivier, Adélaïde, 2018. "Moderate deviation principle in nonlinear bifurcating autoregressive models," Statistics & Probability Letters, Elsevier, vol. 138(C), pages 20-26.
    7. Delmas, Jean-François & Marsalle, Laurence, 2010. "Detection of cellular aging in a Galton-Watson process," Stochastic Processes and their Applications, Elsevier, vol. 120(12), pages 2495-2519, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S. Valère Bitseki Penda & Jean-François Delmas, 2023. "Central Limit Theorem for Kernel Estimator of Invariant Density in Bifurcating Markov Chains Models," Journal of Theoretical Probability, Springer, vol. 36(3), pages 1591-1625, September.
    2. Vincent Bansaye & S. Valère Bitseki Penda, 2021. "A Phase Transition for Large Values of Bifurcating Autoregressive Models," Journal of Theoretical Probability, Springer, vol. 34(4), pages 2081-2116, December.
    3. Cai, Zongwu, 2003. "Nonparametric estimation equations for time series data," Statistics & Probability Letters, Elsevier, vol. 62(4), pages 379-390, May.
    4. Domowitz, Ian & El-Gamal, Mahmoud A., 2001. "A consistent nonparametric test of ergodicity for time series with applications," Journal of Econometrics, Elsevier, vol. 102(2), pages 365-398, June.
    5. Hansen, Lars Peter & Scheinkman, Jose Alexandre, 1995. "Back to the Future: Generating Moment Implications for Continuous-Time Markov Processes," Econometrica, Econometric Society, vol. 63(4), pages 767-804, July.
    6. Hoffmann, Marc & Marguet, Aline, 2019. "Statistical estimation in a randomly structured branching population," Stochastic Processes and their Applications, Elsevier, vol. 129(12), pages 5236-5277.
    7. Patrice Bertail & Stéphan Clémençon, 2005. "Regeneration-based Statistics for Harris Recurrent Markov Chains," Working Papers 2005-13, Center for Research in Economics and Statistics.
    8. de Saporta, Benoîte & Gégout-Petit, Anne & Marsalle, Laurence, 2012. "Asymmetry tests for bifurcating auto-regressive processes with missing data," Statistics & Probability Letters, Elsevier, vol. 82(7), pages 1439-1444.
    9. Chang, Christopher C. & Politis, Dimitris N., 2011. "Bootstrap with larger resample size for root-n consistent density estimation with time series data," Statistics & Probability Letters, Elsevier, vol. 81(6), pages 652-661, June.
    10. El-Gamal, Mahmoud A. & Ryu, Deockhyun, 2006. "Short-memory and the PPP hypothesis," Journal of Economic Dynamics and Control, Elsevier, vol. 30(3), pages 361-391, March.
    11. Deockhyun Ryu & Mahmoud A. El-Gamal, 2004. "Convergence Hypotheses are Ill-Posed:Non-stationarity of Cross-Country Income Distribution D," Econometric Society 2004 Far Eastern Meetings 576, Econometric Society.
    12. Vincent Bansaye, 2019. "Ancestral Lineages and Limit Theorems for Branching Markov Chains in Varying Environment," Journal of Theoretical Probability, Springer, vol. 32(1), pages 249-281, March.
    13. Lacour, Claire, 2008. "Nonparametric estimation of the stationary density and the transition density of a Markov chain," Stochastic Processes and their Applications, Elsevier, vol. 118(2), pages 232-260, February.
    14. Deockhyun Ryu & Mahmoud A. El-Gamal, 2004. "Short Memory and the PPP-puzzle," Econometric Society 2004 Far Eastern Meetings 577, Econometric Society.
    15. Liebscher, Eckhard, 1999. "Asymptotic normality of nonparametric estimators under [alpha]-mixing condition," Statistics & Probability Letters, Elsevier, vol. 43(3), pages 243-250, July.
    16. Bercu, Bernard & Blandin, Vassili, 2015. "A Rademacher–Menchov approach for random coefficient bifurcating autoregressive processes," Stochastic Processes and their Applications, Elsevier, vol. 125(4), pages 1218-1243.
    17. Cai, Zongwu, 2001. "Weighted Nadaraya-Watson regression estimation," Statistics & Probability Letters, Elsevier, vol. 51(3), pages 307-318, February.
    18. de Saporta, Benoîte & Gégout-Petit, Anne & Marsalle, Laurence, 2014. "Statistical study of asymmetry in cell lineage data," Computational Statistics & Data Analysis, Elsevier, vol. 69(C), pages 15-39.
    19. Isha Bagai & B. Prakasa Rao, 1995. "Kernel-type density and failure rate estimation for associated sequences," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 47(2), pages 253-266, June.
    20. Siyu Liu & Xiequan Fan & Haijuan Hu & Paul Doukhan, 2024. "Pointwise Sharp Moderate Deviations for a Kernel Density Estimator," Mathematics, MDPI, vol. 12(20), pages 1-9, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:158:y:2023:i:c:p:282-314. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.