IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v26y1996i2p179-185.html
   My bibliography  Save this article

Uniform strong consistency of kernel density estimators under dependence

Author

Listed:
  • Kim, Tae Yoon
  • Cox, Dennis D.

Abstract

In this note it is shown that the kernel density estimators converge a.s. uniformly on compact subsets of the variable under [alpha]-mixing. In particular, the rates of convergence for the estimators will be investigated to analyze dependency effects.

Suggested Citation

  • Kim, Tae Yoon & Cox, Dennis D., 1996. "Uniform strong consistency of kernel density estimators under dependence," Statistics & Probability Letters, Elsevier, vol. 26(2), pages 179-185, February.
  • Handle: RePEc:eee:stapro:v:26:y:1996:i:2:p:179-185
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0167-7152(95)00008-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. George Roussas, 1969. "Nonparametric estimation in Markov processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 21(1), pages 73-87, December.
    2. Cox, Dennis D. & Kim, Tae Yoon, 1995. "Moment bounds for mixing random variables useful in nonparametric function estimation," Stochastic Processes and their Applications, Elsevier, vol. 56(1), pages 151-158, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin, Lu & Li, Feng & Zhu, Lixing & Härdle, Wolfgang Karl, 2010. "Mean volatility regressions," SFB 649 Discussion Papers 2011-003, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    2. Hwang, Eunju & Shin, Dong Wan, 2012. "Stationary bootstrap for kernel density estimators under ψ-weak dependence," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1581-1593.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, Jiti & Tong, Howell & Wolff, Rodney, 2002. "Model Specification Tests in Nonparametric Stochastic Regression Models," Journal of Multivariate Analysis, Elsevier, vol. 83(2), pages 324-359, November.
    2. Bitseki Penda, S. Valère, 2023. "Moderate deviation principles for kernel estimator of invariant density in bifurcating Markov chains," Stochastic Processes and their Applications, Elsevier, vol. 158(C), pages 282-314.
    3. Fernández-Val, Iván & Weidner, Martin, 2016. "Individual and time effects in nonlinear panel models with large N, T," Journal of Econometrics, Elsevier, vol. 192(1), pages 291-312.
    4. Mahmoud A. El-Gamal & Deockhyun Ryu, 2013. "Nonstationarity and Stochastic Stability of Relative Income Clubs," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 59(4), pages 756-775, December.
    5. Hyungsik Roger Moon & Martin Weidner, 2015. "Linear Regression for Panel With Unknown Number of Factors as Interactive Fixed Effects," Econometrica, Econometric Society, vol. 83(4), pages 1543-1579, July.
    6. Cai, Zongwu, 2003. "Nonparametric estimation equations for time series data," Statistics & Probability Letters, Elsevier, vol. 62(4), pages 379-390, May.
    7. Domowitz, Ian & El-Gamal, Mahmoud A., 2001. "A consistent nonparametric test of ergodicity for time series with applications," Journal of Econometrics, Elsevier, vol. 102(2), pages 365-398, June.
    8. Hansen, Lars Peter & Scheinkman, Jose Alexandre, 1995. "Back to the Future: Generating Moment Implications for Continuous-Time Markov Processes," Econometrica, Econometric Society, vol. 63(4), pages 767-804, July.
    9. Gao, Jiti & Anh, Vo, 2000. "A central limit theorem for a random quadratic form of strictly stationary processes," Statistics & Probability Letters, Elsevier, vol. 49(1), pages 69-79, August.
    10. Patrice Bertail & Stéphan Clémençon, 2005. "Regeneration-based Statistics for Harris Recurrent Markov Chains," Working Papers 2005-13, Center for Research in Economics and Statistics.
    11. Patrice Bertail & Stéphan Clémençon, 2004. "Regenerative Block-bootstrap for Markov Chains," Working Papers 2004-47, Center for Research in Economics and Statistics.
    12. Chang, Christopher C. & Politis, Dimitris N., 2011. "Bootstrap with larger resample size for root-n consistent density estimation with time series data," Statistics & Probability Letters, Elsevier, vol. 81(6), pages 652-661, June.
    13. Hyungsik Roger Roger Moon & Martin Weidner, 2014. "Linear regression for panel with unknown number of factors as interactive fixed effects," CeMMAP working papers 35/14, Institute for Fiscal Studies.
    14. Gao, Jiti & Lu, Zudi & Tjøstheim, Dag, 2008. "Moment inequalities for spatial processes," Statistics & Probability Letters, Elsevier, vol. 78(6), pages 687-697, April.
    15. El-Gamal, Mahmoud A. & Ryu, Deockhyun, 2006. "Short-memory and the PPP hypothesis," Journal of Economic Dynamics and Control, Elsevier, vol. 30(3), pages 361-391, March.
    16. Deockhyun Ryu & Mahmoud A. El-Gamal, 2004. "Convergence Hypotheses are Ill-Posed:Non-stationarity of Cross-Country Income Distribution D," Econometric Society 2004 Far Eastern Meetings 576, Econometric Society.
    17. Liebscher, Eckhard, 1996. "Strong convergence of sums of [alpha]-mixing random variables with applications to density estimation," Stochastic Processes and their Applications, Elsevier, vol. 65(1), pages 69-80, December.
    18. Hyungsik Roger Roger Moon & Martin Weidner, 2013. "Linear regression for panel with unknown number of factors as interactive fixed effects," CeMMAP working papers 49/13, Institute for Fiscal Studies.
    19. Veredas, David & Rodríguez Poo, Juan M., 2001. "On the (intradaily) seasonality and dynamics of a financial point process: a semiparametric approach," DES - Working Papers. Statistics and Econometrics. WS ws013321, Universidad Carlos III de Madrid. Departamento de Estadística.
    20. Eric Ghysels & Christian Gouriéroux & Joann Jasiak, 1996. "Kernel Autocorrelogram for Time Deformed Processes," CIRANO Working Papers 96s-19, CIRANO.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:26:y:1996:i:2:p:179-185. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.