IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v120y2010i12p2495-2519.html
   My bibliography  Save this article

Detection of cellular aging in a Galton-Watson process

Author

Listed:
  • Delmas, Jean-François
  • Marsalle, Laurence

Abstract

We consider the bifurcating Markov chain model introduced by Guyon to detect cellular aging from cell lineage. To take into account the possibility for a cell to die, we use an underlying super-critical binary Galton-Watson process to describe the evolution of the cell lineage. We give in this more general framework a weak law of large number, an invariance principle and thus fluctuation results for the average over all individuals in a given generation, or up to a given generation. We also prove that the fluctuations over each generation are independent. Then we present the natural modifications of the tests given by Guyon in cellular aging detection within the particular case of the auto-regressive model.

Suggested Citation

  • Delmas, Jean-François & Marsalle, Laurence, 2010. "Detection of cellular aging in a Galton-Watson process," Stochastic Processes and their Applications, Elsevier, vol. 120(12), pages 2495-2519, December.
  • Handle: RePEc:eee:spapps:v:120:y:2010:i:12:p:2495-2519
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(10)00172-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Weiguo, 2003. "Some limit properties for Markov chains indexed by a homogeneous tree," Statistics & Probability Letters, Elsevier, vol. 65(3), pages 241-250, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bitseki Penda, S. Valère, 2023. "Moderate deviation principles for kernel estimator of invariant density in bifurcating Markov chains," Stochastic Processes and their Applications, Elsevier, vol. 158(C), pages 282-314.
    2. Bercu, Bernard & Blandin, Vassili, 2015. "A Rademacher–Menchov approach for random coefficient bifurcating autoregressive processes," Stochastic Processes and their Applications, Elsevier, vol. 125(4), pages 1218-1243.
    3. Alsmeyer, Gerold & Gröttrup, Sören, 2016. "Branching within branching: A model for host–parasite co-evolution," Stochastic Processes and their Applications, Elsevier, vol. 126(6), pages 1839-1883.
    4. de Saporta, Benoîte & Gégout-Petit, Anne & Marsalle, Laurence, 2014. "Statistical study of asymmetry in cell lineage data," Computational Statistics & Data Analysis, Elsevier, vol. 69(C), pages 15-39.
    5. S. Valère Bitseki Penda & Adélaïde Olivier, 2017. "Autoregressive functions estimation in nonlinear bifurcating autoregressive models," Statistical Inference for Stochastic Processes, Springer, vol. 20(2), pages 179-210, July.
    6. Vincent Bansaye, 2019. "Ancestral Lineages and Limit Theorems for Branching Markov Chains in Varying Environment," Journal of Theoretical Probability, Springer, vol. 32(1), pages 249-281, March.
    7. Bernard Bercu & Vassili Blandin, 2015. "Limit theorems for bifurcating integer-valued autoregressive processes," Statistical Inference for Stochastic Processes, Springer, vol. 18(1), pages 33-67, April.
    8. de Saporta, Benoîte & Gégout-Petit, Anne & Marsalle, Laurence, 2012. "Asymmetry tests for bifurcating auto-regressive processes with missing data," Statistics & Probability Letters, Elsevier, vol. 82(7), pages 1439-1444.
    9. Hoffmann, Marc & Olivier, Adélaïde, 2016. "Nonparametric estimation of the division rate of an age dependent branching process," Stochastic Processes and their Applications, Elsevier, vol. 126(5), pages 1433-1471.
    10. S. Valère Bitseki Penda & Jean-François Delmas, 2023. "Central Limit Theorem for Kernel Estimator of Invariant Density in Bifurcating Markov Chains Models," Journal of Theoretical Probability, Springer, vol. 36(3), pages 1591-1625, September.
    11. Vincent Bansaye & S. Valère Bitseki Penda, 2021. "A Phase Transition for Large Values of Bifurcating Autoregressive Models," Journal of Theoretical Probability, Springer, vol. 34(4), pages 2081-2116, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Zhiyan & Yang, Weiguo, 2010. "Some limit properties for the mth-order nonhomogeneous Markov chains indexed by an m rooted Cayley tree," Statistics & Probability Letters, Elsevier, vol. 80(15-16), pages 1223-1233, August.
    2. Zhiyan Shi & Zhongzhi Wang & Pingping Zhong & Yan Fan, 2022. "The Generalized Entropy Ergodic Theorem for Nonhomogeneous Bifurcating Markov Chains Indexed by a Binary Tree," Journal of Theoretical Probability, Springer, vol. 35(3), pages 1367-1390, September.
    3. Li, Gaorong & Chen, Shuang & Zhang, Junhua, 2009. "A class of random deviation theorems and the approach of Laplace transform," Statistics & Probability Letters, Elsevier, vol. 79(2), pages 202-210, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:120:y:2010:i:12:p:2495-2519. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.