IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v34y2021i4d10.1007_s10959-020-01033-w.html
   My bibliography  Save this article

A Phase Transition for Large Values of Bifurcating Autoregressive Models

Author

Listed:
  • Vincent Bansaye

    (CMAP, École Polytechnique)

  • S. Valère Bitseki Penda

    (Université de Bourgogne Franche-Comté)

Abstract

We describe the asymptotic behavior of the number $$Z_n[a_n,\infty )$$ Z n [ a n , ∞ ) of individuals with a large value in a stable bifurcating autoregressive process, where $$a_n\rightarrow \infty $$ a n → ∞ . The study of the associated first moment is equivalent to the annealed large deviation problem of an autoregressive process in a random environment. The trajectorial behavior of $$Z_n[a_n,\infty )$$ Z n [ a n , ∞ ) is obtained by the study of the ancestral paths corresponding to the large deviation event together with the environment of the process. This study of large deviations of autoregressive processes in random environment is of independent interest and achieved first. The estimates for bifurcating autoregressive process involve then a law of large numbers for non-homogenous trees. Two regimes appear in the stable case, depending on whether one of the autoregressive parameters is greater than 1 or not. It yields different asymptotic behaviors for large local densities and maximal value of the bifurcating autoregressive process.

Suggested Citation

  • Vincent Bansaye & S. Valère Bitseki Penda, 2021. "A Phase Transition for Large Values of Bifurcating Autoregressive Models," Journal of Theoretical Probability, Springer, vol. 34(4), pages 2081-2116, December.
  • Handle: RePEc:spr:jotpro:v:34:y:2021:i:4:d:10.1007_s10959-020-01033-w
    DOI: 10.1007/s10959-020-01033-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-020-01033-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-020-01033-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S. Valère Bitseki Penda & Adélaïde Olivier, 2017. "Autoregressive functions estimation in nonlinear bifurcating autoregressive models," Statistical Inference for Stochastic Processes, Springer, vol. 20(2), pages 179-210, July.
    2. J. Zhou & I. V. Basawa, 2005. "Maximum Likelihood Estimation for a First‐Order Bifurcating Autoregressive Process with Exponential Errors," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(6), pages 825-842, November.
    3. Bercu, Bernard & Blandin, Vassili, 2015. "A Rademacher–Menchov approach for random coefficient bifurcating autoregressive processes," Stochastic Processes and their Applications, Elsevier, vol. 125(4), pages 1218-1243.
    4. de Saporta, Benoîte & Gégout-Petit, Anne & Marsalle, Laurence, 2014. "Statistical study of asymmetry in cell lineage data," Computational Statistics & Data Analysis, Elsevier, vol. 69(C), pages 15-39.
    5. de Saporta, Benoîte & Gégout-Petit, Anne & Marsalle, Laurence, 2012. "Asymmetry tests for bifurcating auto-regressive processes with missing data," Statistics & Probability Letters, Elsevier, vol. 82(7), pages 1439-1444.
    6. Delmas, Jean-François & Marsalle, Laurence, 2010. "Detection of cellular aging in a Galton-Watson process," Stochastic Processes and their Applications, Elsevier, vol. 120(12), pages 2495-2519, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bercu, Bernard & Blandin, Vassili, 2015. "A Rademacher–Menchov approach for random coefficient bifurcating autoregressive processes," Stochastic Processes and their Applications, Elsevier, vol. 125(4), pages 1218-1243.
    2. S. Valère Bitseki Penda & Adélaïde Olivier, 2017. "Autoregressive functions estimation in nonlinear bifurcating autoregressive models," Statistical Inference for Stochastic Processes, Springer, vol. 20(2), pages 179-210, July.
    3. Bernard Bercu & Vassili Blandin, 2015. "Limit theorems for bifurcating integer-valued autoregressive processes," Statistical Inference for Stochastic Processes, Springer, vol. 18(1), pages 33-67, April.
    4. de Saporta, Benoîte & Gégout-Petit, Anne & Marsalle, Laurence, 2014. "Statistical study of asymmetry in cell lineage data," Computational Statistics & Data Analysis, Elsevier, vol. 69(C), pages 15-39.
    5. Bitseki Penda, S. Valère, 2023. "Moderate deviation principles for kernel estimator of invariant density in bifurcating Markov chains," Stochastic Processes and their Applications, Elsevier, vol. 158(C), pages 282-314.
    6. Hoffmann, Marc & Marguet, Aline, 2019. "Statistical estimation in a randomly structured branching population," Stochastic Processes and their Applications, Elsevier, vol. 129(12), pages 5236-5277.
    7. Bitseki Penda, S. Valère & Olivier, Adélaïde, 2018. "Moderate deviation principle in nonlinear bifurcating autoregressive models," Statistics & Probability Letters, Elsevier, vol. 138(C), pages 20-26.
    8. de Saporta, Benoîte & Gégout-Petit, Anne & Marsalle, Laurence, 2012. "Asymmetry tests for bifurcating auto-regressive processes with missing data," Statistics & Probability Letters, Elsevier, vol. 82(7), pages 1439-1444.
    9. Zhang, Chenhua, 2011. "Parameter estimation for first-order bifurcating autoregressive processes with Weibull innovations," Statistics & Probability Letters, Elsevier, vol. 81(12), pages 1961-1969.
    10. Damien G Hicks & Terence P Speed & Mohammed Yassin & Sarah M Russell, 2019. "Maps of variability in cell lineage trees," PLOS Computational Biology, Public Library of Science, vol. 15(2), pages 1-32, February.
    11. Vincent Bansaye, 2019. "Ancestral Lineages and Limit Theorems for Branching Markov Chains in Varying Environment," Journal of Theoretical Probability, Springer, vol. 32(1), pages 249-281, March.
    12. Hwang, S.Y. & Basawa, I.V., 2009. "Branching Markov processes and related asymptotics," Journal of Multivariate Analysis, Elsevier, vol. 100(6), pages 1155-1167, July.
    13. Mao, Mingzhi, 2014. "The asymptotic behaviors for least square estimation of multi-casting autoregressive processes," Journal of Multivariate Analysis, Elsevier, vol. 129(C), pages 110-124.
    14. S. Valère Bitseki Penda & Jean-François Delmas, 2023. "Central Limit Theorem for Kernel Estimator of Invariant Density in Bifurcating Markov Chains Models," Journal of Theoretical Probability, Springer, vol. 36(3), pages 1591-1625, September.
    15. Hoffmann, Marc & Olivier, Adélaïde, 2016. "Nonparametric estimation of the division rate of an age dependent branching process," Stochastic Processes and their Applications, Elsevier, vol. 126(5), pages 1433-1471.
    16. Alsmeyer, Gerold & Gröttrup, Sören, 2016. "Branching within branching: A model for host–parasite co-evolution," Stochastic Processes and their Applications, Elsevier, vol. 126(6), pages 1839-1883.
    17. Terpstra, Jeff T. & Elbayoumi, Tamer, 2012. "A law of large numbers result for a bifurcating process with an infinite moving average representation," Statistics & Probability Letters, Elsevier, vol. 82(1), pages 123-129.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:34:y:2021:i:4:d:10.1007_s10959-020-01033-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.