IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v119y2009i4p1368-1385.html
   My bibliography  Save this article

Comparing the minimal Hellinger martingale measure of order q to the q-optimal martingale measure

Author

Listed:
  • Choulli, Tahir
  • Stricker, Christophe

Abstract

This paper investigates the relationship between the minimal Hellinger martingale measure of order q (MHM measure hereafter) and the q-optimal martingale measure for any q[not equal to]1. First, we provide more results for the MHM measure; in particular we establish its complete characterization in two manners. Then we derive two equivalent conditions for both martingale measures to coincide. These conditions are in particular fulfilled in the case of markets driven by Lévy processes. Finally, we analyze the MHM measure as well as its relationship to the q-optimal martingale measure for the case of a discrete-time market model.

Suggested Citation

  • Choulli, Tahir & Stricker, Christophe, 2009. "Comparing the minimal Hellinger martingale measure of order q to the q-optimal martingale measure," Stochastic Processes and their Applications, Elsevier, vol. 119(4), pages 1368-1385, April.
  • Handle: RePEc:eee:spapps:v:119:y:2009:i:4:p:1368-1385
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(08)00110-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fabio Bellini & Marco Frittelli, 2002. "On the Existence of Minimax Martingale Measures," Mathematical Finance, Wiley Blackwell, vol. 12(1), pages 1-21, January.
    2. Harrison, J. Michael & Pliska, Stanley R., 1981. "Martingales and stochastic integrals in the theory of continuous trading," Stochastic Processes and their Applications, Elsevier, vol. 11(3), pages 215-260, August.
    3. Tahir Choulli & Christophe Stricker, 2006. "More On Minimal Entropy–Hellinger Martingale Measure," Mathematical Finance, Wiley Blackwell, vol. 16(1), pages 1-19, January.
    4. Marco Frittelli, 2000. "The Minimal Entropy Martingale Measure and the Valuation Problem in Incomplete Markets," Mathematical Finance, Wiley Blackwell, vol. 10(1), pages 39-52, January.
    5. Henderson, Vicky & Hobson, David, 2007. "Horizon-unbiased utility functions," Stochastic Processes and their Applications, Elsevier, vol. 117(11), pages 1621-1641, November.
    6. Yuri M. Kabanov & Christophe Stricker, 2002. "On the optimal portfolio for the exponential utility maximization: remarks to the six‐author paper," Mathematical Finance, Wiley Blackwell, vol. 12(2), pages 125-134, April.
    7. Tahir Choulli & Christophe Stricker & Jia Li, 2007. "Minimal Hellinger martingale measures of order q," Finance and Stochastics, Springer, vol. 11(3), pages 399-427, July.
    8. J. Michael Harrison & Stanley R. Pliska, 1981. "Martingales and Stochastic Integrals in the Theory of Continous Trading," Discussion Papers 454, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    9. Thomas Goll & Ludger Rüschendorf, 2001. "Minimax and minimal distance martingale measures and their relationship to portfolio optimization," Finance and Stochastics, Springer, vol. 5(4), pages 557-581.
    10. Tahir Choulli & Christophe Stricker, 2005. "Minimal Entropy–Hellinger Martingale Measure In Incomplete Markets," Mathematical Finance, Wiley Blackwell, vol. 15(3), pages 465-490, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tahir Choulli & Junfeng Ma, 2013. "Explicit Description of HARA Forward Utilities and Their Optimal Portfolios," Papers 1307.0785, arXiv.org.
    2. Choulli, Tahir & Yansori, Sina, 2022. "Explicit description of all deflators for market models under random horizon with applications to NFLVR," Stochastic Processes and their Applications, Elsevier, vol. 151(C), pages 230-264.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hubalek, Friedrich & Sgarra, Carlo, 2009. "On the Esscher transforms and other equivalent martingale measures for Barndorff-Nielsen and Shephard stochastic volatility models with jumps," Stochastic Processes and their Applications, Elsevier, vol. 119(7), pages 2137-2157, July.
    2. Mahan Tahvildari, 2021. "Forward indifference valuation and hedging of basis risk under partial information," Papers 2101.00251, arXiv.org.
    3. Thorsten Rheinländer & Jenny Sexton, 2011. "Hedging Derivatives," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 8062, August.
    4. Tsukasa Fujiwara, 2004. "From the Minimal Entropy Martingale Measures to the Optimal Strategies for the Exponential Utility Maximization: the Case of Geometric Lévy Processes," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 11(4), pages 367-391, December.
    5. Tahir Choulli & Jun Deng & Junfeng Ma, 2012. "How Non-Arbitrage, Viability and Num\'eraire Portfolio are Related," Papers 1211.4598, arXiv.org, revised Jun 2014.
    6. Ivivi J. Mwaniki, 2017. "On skewed, leptokurtic returns and pentanomial lattice option valuation via minimal entropy martingale measure," Cogent Economics & Finance, Taylor & Francis Journals, vol. 5(1), pages 1358894-135, January.
    7. Friedrich Hubalek & Carlo Sgarra, 2008. "On the Esscher transforms and other equivalent martingale measures for Barndorff-Nielsen and Shephard stochastic volatility models with jumps," Papers 0807.1227, arXiv.org.
    8. Tahir Choulli & Sina Yansori, 2018. "Explicit description of all deflators for market models under random horizon with applications to NFLVR," Papers 1803.10128, arXiv.org, revised Feb 2021.
    9. Tahir Choulli & Sina Yansori, 2018. "Log-optimal portfolio and num\'eraire portfolio for market models stopped at a random time," Papers 1810.12762, arXiv.org, revised Aug 2020.
    10. Friedrich Hubalek & Carlo Sgarra, 2006. "Esscher transforms and the minimal entropy martingale measure for exponential Levy models," Quantitative Finance, Taylor & Francis Journals, vol. 6(2), pages 125-145.
    11. repec:dau:papers:123456789/5374 is not listed on IDEAS
    12. Tahir Choulli & Ella Elazkany & Mich`ele Vanmaele, 2024. "The second-order Esscher martingale densities for continuous-time market models," Papers 2407.03960, arXiv.org.
    13. Anastasia Ellanskaya & Lioudmila Vostrikova, 2013. "Utility maximisation and utility indifference price for exponential semi-martingale models with random factor," Papers 1303.1134, arXiv.org.
    14. Guo, Ivan & Zhu, Song-Ping, 2017. "Equal risk pricing under convex trading constraints," Journal of Economic Dynamics and Control, Elsevier, vol. 76(C), pages 136-151.
    15. Mingxin Xu, 2006. "Risk measure pricing and hedging in incomplete markets," Annals of Finance, Springer, vol. 2(1), pages 51-71, January.
    16. Sigrid Källblad & Jan Obłój & Thaleia Zariphopoulou, 2018. "Dynamically consistent investment under model uncertainty: the robust forward criteria," Finance and Stochastics, Springer, vol. 22(4), pages 879-918, October.
    17. Romuald Hervé Momeya & Manuel Morales, 2016. "On the Price of Risk of the Underlying Markov Chain in a Regime-Switching Exponential Lévy Model," Methodology and Computing in Applied Probability, Springer, vol. 18(1), pages 107-135, March.
    18. Michail Anthropelos, 2011. "Forward Exponential Performances: Pricing and Optimal Risk Sharing," Papers 1109.3908, arXiv.org, revised Mar 2013.
    19. Barro, Diana & Consigli, Giorgio & Varun, Vivek, 2022. "A stochastic programming model for dynamic portfolio management with financial derivatives," Journal of Banking & Finance, Elsevier, vol. 140(C).
    20. Lioudmila Vostrikova & Yuchao Dong, 2018. "Utility maximization for Lévy switching models," Working Papers hal-01844635, HAL.
    21. Ivan Peñaloza & Pablo Padilla, 2022. "A Pricing Method in a Constrained Market with Differential Informational Frameworks," Computational Economics, Springer;Society for Computational Economics, vol. 60(3), pages 1055-1100, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:119:y:2009:i:4:p:1368-1385. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.