Coupling methods and exponential ergodicity for two‐factor affine processes
Author
Abstract
Suggested Citation
DOI: 10.1002/mana.202100064
Download full text from publisher
References listed on IDEAS
- Christa Cuchiero & Josef Teichmann, 2011. "Path properties and regularity of affine processes on general state spaces," Papers 1107.1607, arXiv.org, revised Jan 2013.
- John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005.
"A Theory Of The Term Structure Of Interest Rates,"
World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164,
World Scientific Publishing Co. Pte. Ltd..
- Cox, John C & Ingersoll, Jonathan E, Jr & Ross, Stephen A, 1985. "A Theory of the Term Structure of Interest Rates," Econometrica, Econometric Society, vol. 53(2), pages 385-407, March.
- Ying Jiao & Chunhua Ma & Simone Scotti, 2017. "Alpha-CIR model with branching processes in sovereign interest rate modeling," Finance and Stochastics, Springer, vol. 21(3), pages 789-813, July.
- Schmidt, Thorsten & Tappe, Stefan & Yu, Weijun, 2020. "Infinite dimensional affine processes," Stochastic Processes and their Applications, Elsevier, vol. 130(12), pages 7131-7169.
- Ying Jiao & Chunhua Ma & Simone Scotti, 2017. "Alpha-CIR Model with Branching Processes in Sovereign Interest Rate Modelling," Post-Print hal-01275397, HAL.
- Majka, Mateusz B., 2017. "Coupling and exponential ergodicity for stochastic differential equations driven by Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 127(12), pages 4083-4125.
- Filipović, Damir & Mayerhofer, Eberhard & Schneider, Paul, 2013.
"Density approximations for multivariate affine jump-diffusion processes,"
Journal of Econometrics, Elsevier, vol. 176(2), pages 93-111.
- Damir Filipovi'c & Eberhard Mayerhofer & Paul Schneider, 2011. "Density Approximations for Multivariate Affine Jump-Diffusion Processes," Papers 1104.5326, arXiv.org, revised Oct 2011.
- Damir FILIPOVIC & Eberhard BERHARD & Paul SCHNEIDER, 2011. "Density Approximations For Multivariate Affine Jump-Diffusion Processes," Swiss Finance Institute Research Paper Series 11-20, Swiss Finance Institute.
- Sato, Ken-iti & Yamazato, Makoto, 1984. "Operator-selfdecomposable distributions as limit distributions of processes of Ornstein-Uhlenbeck type," Stochastic Processes and their Applications, Elsevier, vol. 17(1), pages 73-100, May.
- Luo, Dejun & Wang, Jian, 2019. "Refined basic couplings and Wasserstein-type distances for SDEs with Lévy noises," Stochastic Processes and their Applications, Elsevier, vol. 129(9), pages 3129-3173.
- Darrell Duffie & Jun Pan & Kenneth Singleton, 2000.
"Transform Analysis and Asset Pricing for Affine Jump-Diffusions,"
Econometrica, Econometric Society, vol. 68(6), pages 1343-1376, November.
- Darrell Duffie & Jun Pan & Kenneth Singleton, 1999. "Transform Analysis and Asset Pricing for Affine Jump-Diffusions," NBER Working Papers 7105, National Bureau of Economic Research, Inc.
- Matyas Barczy & Leif Doering & Zenghu Li & Gyula Pap, 2013. "Parameter estimation for a subcritical affine two factor model," Papers 1302.3451, arXiv.org, revised Apr 2014.
- Beáta Bolyog & Gyula Pap, 2019. "On conditional least squares estimation for affine diffusions based on continuous time observations," Statistical Inference for Stochastic Processes, Springer, vol. 22(1), pages 41-75, April.
- Hui Chen & Scott Joslin, 2012.
"Generalized Transform Analysis of Affine Processes and Applications in Finance,"
The Review of Financial Studies, Society for Financial Studies, vol. 25(7), pages 2225-2256.
- Hui Chen & Scott Joslin, 2011. "Generalized Transform Analysis of Affine Processes and Applications in Finance," NBER Working Papers 16906, National Bureau of Economic Research, Inc.
- Aurélien Alfonsi, 2015. "Affine Diffusions and Related Processes: Simulation, Theory and Applications," Post-Print hal-03127212, HAL.
- Böttcher, Björn & Schilling, René L. & Wang, Jian, 2011. "Constructions of coupling processes for Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 121(6), pages 1201-1216, June.
- Mayerhofer, Eberhard & Stelzer, Robert & Vestweber, Johanna, 2020. "Geometric ergodicity of affine processes on cones," Stochastic Processes and their Applications, Elsevier, vol. 130(7), pages 4141-4173.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Mayerhofer, Eberhard & Stelzer, Robert & Vestweber, Johanna, 2020. "Geometric ergodicity of affine processes on cones," Stochastic Processes and their Applications, Elsevier, vol. 130(7), pages 4141-4173.
- Micha{l} Barski & Rafa{l} {L}ochowski, 2023. "Classification and calibration of affine models driven by independent L\'evy processes," Papers 2303.08477, arXiv.org.
- M.E. Mancino & S. Scotti & G. Toscano, 2020.
"Is the Variance Swap Rate Affine in the Spot Variance? Evidence from S&P500 Data,"
Applied Mathematical Finance, Taylor & Francis Journals, vol. 27(4), pages 288-316, July.
- Maria Elvira Mancino & Simone Scotti & Giacomo Toscano, 2020. "Is the variance swap rate affine in the spot variance? Evidence from S&P500 data," Papers 2004.04015, arXiv.org.
- Micha{l} Barski & Rafa{l} {L}ochowski, 2024. "Affine term structure models driven by independent L\'evy processes," Papers 2402.07503, arXiv.org.
- Ying Jiao & Chunhua Ma & Simone Scotti & Chao Zhou, 2021. "The Alpha‐Heston stochastic volatility model," Mathematical Finance, Wiley Blackwell, vol. 31(3), pages 943-978, July.
- Hlouskova, Jaroslava & Sögner, Leopold, 2020.
"GMM estimation of affine term structure models,"
Econometrics and Statistics, Elsevier, vol. 13(C), pages 2-15.
- Jaroslava Hlouskova & Leopold Sogner, 2015. "GMM Estimation of Affine Term Structure Models," Papers 1508.01661, arXiv.org.
- Hlouskova, Jaroslava & Sögner, Leopold, 2015. "GMM Estimation of Affine Term Structure Models," Economics Series 315, Institute for Advanced Studies.
- Alessandro Bondi & Sergio Pulido & Simone Scotti, 2022. "The rough Hawkes Heston stochastic volatility model," Papers 2210.12393, arXiv.org.
- Alessandro Bondi & Sergio Pulido & Simone Scotti, 2022. "The rough Hawkes Heston stochastic volatility model," Working Papers hal-03827332, HAL.
- Shukai Chen, 2023. "On the Exponential Ergodicity of (2+2)-Affine Processes in Total Variation Distances," Journal of Theoretical Probability, Springer, vol. 36(1), pages 315-330, March.
- Xiaowei Zhang & Peter W. Glynn, 2018. "Affine Jump-Diffusions: Stochastic Stability and Limit Theorems," Papers 1811.00122, arXiv.org.
- Pingping Jiang & Bo Li & Yongjin Wang, 2020. "Exit Times, Undershoots and Overshoots for Reflected CIR Process with Two-Sided Jumps," Methodology and Computing in Applied Probability, Springer, vol. 22(2), pages 693-710, June.
- Ying Jiao & Chunhua Ma & Simone Scotti & Chao Zhou, 2018. "The Alpha-Heston Stochastic Volatility Model," Papers 1812.01914, arXiv.org.
- Raj Kumari Bahl & Sotirios Sabanis, 2017. "General Price Bounds for Guaranteed Annuity Options," Papers 1707.00807, arXiv.org.
- Matyas Barczy & Mohamed Ben Alaya & Ahmed Kebaier & Gyula Pap, 2017. "Asymptotic properties of maximum likelihood estimator for the growth rate of a stable CIR process based on continuous time observations," Papers 1711.02140, arXiv.org, revised Feb 2019.
- repec:uts:finphd:41 is not listed on IDEAS
- Recchioni, Maria Cristina & Tedeschi, Gabriele, 2017. "From bond yield to macroeconomic instability: A parsimonious affine model," European Journal of Operational Research, Elsevier, vol. 262(3), pages 1116-1135.
- Peter Feldhütter & Christian Heyerdahl-Larsen & Philipp Illeditsch, 2018. "Risk Premia and Volatilities in a Nonlinear Term Structure Model [Quadratic term structure models: theory and evidence]," Review of Finance, European Finance Association, vol. 22(1), pages 337-380.
- Kensuke Kato & Nobuhiro Nakamura, 2024. "PDE-Based Bayesian Inference of CEV Dynamics for Credit Risk in Stock Prices," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 31(2), pages 389-421, June.
- Beáta Bolyog & Gyula Pap, 2019. "On conditional least squares estimation for affine diffusions based on continuous time observations," Statistical Inference for Stochastic Processes, Springer, vol. 22(1), pages 41-75, April.
- Schneider, Paul, 2019. "An anatomy of the market return," Journal of Financial Economics, Elsevier, vol. 132(2), pages 325-350.
- Satoshi Yamashita & Toshinao Yoshiba, 2010. "Analytical Solution for Expected Loss of a Collateralized Loan: A Square-root Intensity Process Negatively Correlated with Collateral Value," IMES Discussion Paper Series 10-E-10, Institute for Monetary and Economic Studies, Bank of Japan.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:mathna:v:296:y:2023:i:5:p:1716-1736. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0025-584X .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.