IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v99y2002i1p95-115.html
   My bibliography  Save this article

Regular variation of GARCH processes

Author

Listed:
  • Basrak, Bojan
  • Davis, Richard A.
  • Mikosch, Thomas

Abstract

We show that the finite-dimensional distributions of a GARCH process are regularly varying, i.e., the tails of these distributions are Pareto-like and hence heavy-tailed. Regular variation of the joint distributions provides insight into the moment properties of the process as well as the dependence structure between neighboring observations when both are large. Regular variation also plays a vital role in establishing the large sample behavior of a variety of statistics from a GARCH process including the sample mean and the sample autocovariance and autocorrelation functions. In particular, if the 4th moment of the process does not exist, the rate of convergence of the sample autocorrelations becomes extremely slow, and if the second moment does not exist, the sample autocorrelations have non-degenerate limit distributions.

Suggested Citation

  • Basrak, Bojan & Davis, Richard A. & Mikosch, Thomas, 2002. "Regular variation of GARCH processes," Stochastic Processes and their Applications, Elsevier, vol. 99(1), pages 95-115, May.
  • Handle: RePEc:eee:spapps:v:99:y:2002:i:1:p:95-115
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(01)00156-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nelson, Daniel B., 1990. "Stationarity and Persistence in the GARCH(1,1) Model," Econometric Theory, Cambridge University Press, vol. 6(3), pages 318-334, September.
    2. Paul D. Feigin & Richard L. Tweedie, 1985. "Random Coefficient Autoregressive Processes:A Markov Chain Analysis Of Stationarity And Finiteness Of Moments," Journal of Time Series Analysis, Wiley Blackwell, vol. 6(1), pages 1-14, January.
    3. Bougerol, Philippe & Picard, Nico, 1992. "Stationarity of Garch processes and of some nonnegative time series," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 115-127.
    4. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    5. de Haan, L. & Resnick, S. I., 1981. "On the observation closest to the origin," Stochastic Processes and their Applications, Elsevier, vol. 11(3), pages 301-308, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Corbet, Shaen & Larkin, Charles & McMullan, Caroline, 2020. "The impact of industrial incidents on stock market volatility," Research in International Business and Finance, Elsevier, vol. 52(C).
    2. Eric Beutner & Alexander Heinemann & Stephan Smeekes, 2019. "A General Framework for Prediction in Time Series Models," Papers 1902.01622, arXiv.org.
    3. Ping-Yu Chen & Chia-Lin Chang & Chi-Chung Chen & Michael McAleer, 2010. "Modeling the Effect of Oil Price on Global Fertilizer Prices," KIER Working Papers 722, Kyoto University, Institute of Economic Research.
    4. Olivier Wintenberger, 2013. "Continuous Invertibility and Stable QML Estimation of the EGARCH(1,1) Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(4), pages 846-867, December.
    5. W. K. Li & Shiqing Ling & Michael McAleer, 2001. "A Survey of Recent Theoretical Results for Time Series Models with GARCH Errors," ISER Discussion Paper 0545, Institute of Social and Economic Research, Osaka University.
    6. Mimoto, Nao, 2008. "Convergence in distribution for the sup-norm of a kernel density estimator for GARCH innovations," Statistics & Probability Letters, Elsevier, vol. 78(7), pages 915-923, May.
    7. repec:dau:papers:123456789/2285 is not listed on IDEAS
    8. Li, Dong & Ling, Shiqing & Zhu, Ke, 2016. "ZD-GARCH model: a new way to study heteroscedasticity," MPRA Paper 68621, University Library of Munich, Germany.
    9. Christian Francq & Jean-Michel Zakoïan, 2006. "Inference in GARCH when some coefficients are equal to zero," Computing in Economics and Finance 2006 64, Society for Computational Economics.
    10. Meitz, Mika, 2006. "A Necessary And Sufficient Condition For The Strict Stationarity Of A Family Of Garch Processes," Econometric Theory, Cambridge University Press, vol. 22(5), pages 985-988, October.
    11. Werge, Nicklas & Wintenberger, Olivier, 2022. "AdaVol: An Adaptive Recursive Volatility Prediction Method," Econometrics and Statistics, Elsevier, vol. 23(C), pages 19-35.
    12. McAleer, Michael & Chan, Felix & Marinova, Dora, 2007. "An econometric analysis of asymmetric volatility: Theory and application to patents," Journal of Econometrics, Elsevier, vol. 139(2), pages 259-284, August.
    13. Peter A. Zadrozny, 2005. "Necessary and Sufficient Restrictions for Existence of a Unique Fourth Moment of a Univariate GARCH(p,q) Process," CESifo Working Paper Series 1505, CESifo.
    14. Hidalgo, Javier & Zaffaroni, Paolo, 2007. "A goodness-of-fit test for ARCH([infinity]) models," Journal of Econometrics, Elsevier, vol. 141(2), pages 835-875, December.
    15. Hentschel, Ludger, 1995. "All in the family Nesting symmetric and asymmetric GARCH models," Journal of Financial Economics, Elsevier, vol. 39(1), pages 71-104, September.
    16. Chen, Willa W. & Deo, Rohit S., 2006. "The Variance Ratio Statistic At Large Horizons," Econometric Theory, Cambridge University Press, vol. 22(2), pages 206-234, April.
    17. Davidson, James & Li, Xiaoyu, 2016. "Strict stationarity, persistence and volatility forecasting in ARCH(∞) processes," Journal of Empirical Finance, Elsevier, vol. 38(PB), pages 534-547.
    18. Hill, Jonathan B. & Prokhorov, Artem, 2016. "GEL estimation for heavy-tailed GARCH models with robust empirical likelihood inference," Journal of Econometrics, Elsevier, vol. 190(1), pages 18-45.
    19. Giuseppe Cavaliere & Indeewara Perera & Anders Rahbek, 2021. "Specification tests for GARCH processes," Papers 2105.14081, arXiv.org.
    20. Mikosch, Thomas & Straumann, Daniel, 0. "Whittle estimation in a heavy-tailed GARCH(1,1) model," Stochastic Processes and their Applications, Elsevier, vol. 100(1-2), pages 187-222, July.
    21. Meitz, Mika & Saikkonen, Pentti, 2008. "Ergodicity, Mixing, And Existence Of Moments Of A Class Of Markov Models With Applications To Garch And Acd Models," Econometric Theory, Cambridge University Press, vol. 24(5), pages 1291-1320, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:99:y:2002:i:1:p:95-115. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.