IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v126y2016i7p1932-1973.html
   My bibliography  Save this article

Long time asymptotics for fully nonlinear Bellman equations: A backward SDE approach

Author

Listed:
  • Cosso, Andrea
  • Fuhrman, Marco
  • Pham, Huyên

Abstract

We study the large time behavior of solutions to fully nonlinear parabolic equations of Hamilton–Jacobi–Bellman type arising typically in stochastic control theory with control affecting both drift and diffusion coefficients. We prove that, as time horizon goes to infinity, the long run average solution is characterized by a nonlinear ergodic equation. Our results hold under dissipativity conditions, and without any nondegeneracy assumption on the diffusion term. Our approach uses mainly probabilistic arguments relying on new backward SDE representation for nonlinear parabolic, elliptic and ergodic equations.

Suggested Citation

  • Cosso, Andrea & Fuhrman, Marco & Pham, Huyên, 2016. "Long time asymptotics for fully nonlinear Bellman equations: A backward SDE approach," Stochastic Processes and their Applications, Elsevier, vol. 126(7), pages 1932-1973.
  • Handle: RePEc:eee:spapps:v:126:y:2016:i:7:p:1932-1973
    DOI: 10.1016/j.spa.2015.12.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414915003269
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2015.12.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Debussche, Arnaud & Hu, Ying & Tessitore, Gianmario, 2011. "Ergodic BSDEs under weak dissipative assumptions," Stochastic Processes and their Applications, Elsevier, vol. 121(3), pages 407-426, March.
    2. Royer, Manuela, 2006. "Backward stochastic differential equations with jumps and related non-linear expectations," Stochastic Processes and their Applications, Elsevier, vol. 116(10), pages 1358-1376, October.
    3. Robertson, Scott & Xing, Hao, 2015. "Large time behavior of solutions to semi-linear equations with quadratic growth in the gradient," LSE Research Online Documents on Economics 60578, London School of Economics and Political Science, LSE Library.
    4. Ichihara, Naoyuki, 2012. "Large time asymptotic problems for optimal stochastic control with superlinear cost," Stochastic Processes and their Applications, Elsevier, vol. 122(4), pages 1248-1275.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bandini, Elena & Fuhrman, Marco, 2017. "Constrained BSDEs representation of the value function in optimal control of pure jump Markov processes," Stochastic Processes and their Applications, Elsevier, vol. 127(5), pages 1441-1474.
    2. Wing Fung Chong & Ying Hu & Gechun Liang & Thaleia Zariphopoulou, 2019. "An ergodic BSDE approach to forward entropic risk measures: representation and large-maturity behavior," Finance and Stochastics, Springer, vol. 23(1), pages 239-273, January.
    3. Ying Hu & Gechun Liang & Shanjian Tang, 2018. "Systems of ergodic BSDEs arising in regime switching forward performance processes," Papers 1807.01816, arXiv.org, revised Jun 2020.
    4. Fuhrman, Marco & Morlais, Marie-Amélie, 2020. "Optimal switching problems with an infinite set of modes: An approach by randomization and constrained backward SDEs," Stochastic Processes and their Applications, Elsevier, vol. 130(5), pages 3120-3153.
    5. Arapostathis, Ari & Pang, Guodong & Zheng, Yi, 2020. "Ergodic control of diffusions with compound Poisson jumps under a general structural hypothesis," Stochastic Processes and their Applications, Elsevier, vol. 130(11), pages 6733-6756.
    6. Bandini, Elena & Cosso, Andrea & Fuhrman, Marco & Pham, Huyên, 2019. "Randomized filtering and Bellman equation in Wasserstein space for partial observation control problem," Stochastic Processes and their Applications, Elsevier, vol. 129(2), pages 674-711.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cohen, Samuel N., 2012. "Representing filtration consistent nonlinear expectations as g-expectations in general probability spaces," Stochastic Processes and their Applications, Elsevier, vol. 122(4), pages 1601-1626.
    2. Fujii, Masaaki & Takahashi, Akihiko, 2018. "Quadratic–exponential growth BSDEs with jumps and their Malliavin’s differentiability," Stochastic Processes and their Applications, Elsevier, vol. 128(6), pages 2083-2130.
    3. Confortola, Fulvia & Fuhrman, Marco, 2014. "Backward stochastic differential equations associated to jump Markov processes and applications," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 289-316.
    4. Hu, Mingshang & Wang, Falei, 2021. "Probabilistic approach to singular perturbations of viscosity solutions to nonlinear parabolic PDEs," Stochastic Processes and their Applications, Elsevier, vol. 141(C), pages 139-171.
    5. Madan, Dilip & Pistorius, Martijn & Stadje, Mitja, 2016. "Convergence of BSΔEs driven by random walks to BSDEs: The case of (in)finite activity jumps with general driver," Stochastic Processes and their Applications, Elsevier, vol. 126(5), pages 1553-1584.
    6. Zhao, Guoqing, 2009. "Lenglart domination inequalities for g-expectations," Statistics & Probability Letters, Elsevier, vol. 79(22), pages 2338-2342, November.
    7. Yoshihiro Shirai, 2022. "Extreme Measures in Continuous Time Conic Finace," Papers 2210.13671, arXiv.org, revised Oct 2023.
    8. Roger J. A. Laeven & Mitja Stadje, 2014. "Robust Portfolio Choice and Indifference Valuation," Mathematics of Operations Research, INFORMS, vol. 39(4), pages 1109-1141, November.
    9. Hu, Ying & Lemonnier, Florian, 2019. "Ergodic BSDE with unbounded and multiplicative underlying diffusion and application to large time behaviour of viscosity solution of HJB equation," Stochastic Processes and their Applications, Elsevier, vol. 129(10), pages 4009-4050.
    10. Wing Fung Chong & Ying Hu & Gechun Liang & Thaleia Zariphopoulou, 2019. "An ergodic BSDE approach to forward entropic risk measures: representation and large-maturity behavior," Finance and Stochastics, Springer, vol. 23(1), pages 239-273, January.
    11. Giorgio Fabbri & Fausto Gozzi & Andrzej Swiech, 2017. "Stochastic Optimal Control in Infinite Dimensions - Dynamic Programming and HJB Equations," Post-Print hal-01505767, HAL.
    12. Quenez, Marie-Claire & Sulem, Agnès, 2013. "BSDEs with jumps, optimization and applications to dynamic risk measures," Stochastic Processes and their Applications, Elsevier, vol. 123(8), pages 3328-3357.
    13. Dirk Becherer & Martin Buttner & Klebert Kentia, 2016. "On the monotone stability approach to BSDEs with jumps: Extensions, concrete criteria and examples," Papers 1607.06644, arXiv.org, revised Nov 2019.
    14. Filippo de Feo, 2020. "The Averaging Principle for Non-autonomous Slow-fast Stochastic Differential Equations and an Application to a Local Stochastic Volatility Model," Papers 2012.09082, arXiv.org, revised Jan 2021.
    15. Klimsiak, Tomasz & Rzymowski, Maurycy, 2023. "Nonlinear BSDEs on a general filtration with drivers depending on the martingale part of the solution," Stochastic Processes and their Applications, Elsevier, vol. 161(C), pages 424-450.
    16. Fan, Xiliang & Ren, Yong & Zhu, Dongjin, 2010. "A note on the doubly reflected backward stochastic differential equations driven by a Lévy process," Statistics & Probability Letters, Elsevier, vol. 80(7-8), pages 690-696, April.
    17. Roxana Dumitrescu & Marie-Claire Quenez & Agnès Sulem, 2015. "Optimal Stopping for Dynamic Risk Measures with Jumps and Obstacle Problems," Journal of Optimization Theory and Applications, Springer, vol. 167(1), pages 219-242, October.
    18. Masaaki Fujii & Akihiko Takahashi, 2017. "Anticipated Backward SDEs with Jumps and quadratic-exponential growth drivers," Papers 1705.02440, arXiv.org, revised Jul 2018.
    19. Perninge, Magnus, 2024. "Optimal stopping of BSDEs with constrained jumps and related zero-sum games," Stochastic Processes and their Applications, Elsevier, vol. 173(C).
    20. Antonelli, Fabio & Mancini, Carlo, 2016. "Solutions of BSDE’s with jumps and quadratic/locally Lipschitz generator," Stochastic Processes and their Applications, Elsevier, vol. 126(10), pages 3124-3144.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:126:y:2016:i:7:p:1932-1973. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.