IDEAS home Printed from https://ideas.repec.org/p/arx/papers/math-0612181.html
   My bibliography  Save this paper

Utility Maximization in a jump market model

Author

Listed:
  • Marie-Amelie Morlais

Abstract

In this paper, we consider the classical problem of utility maximization in a financial market allowing jumps. Assuming that the constraint set is a compact set, rather than a convex one, we use a dynamic method from which we derive a specific BSDE. We then aim at showing existence and uniqueness results for the introduced BSDE. This allows us to give an explicit expression of the value function and characterize optimal strategies for our problem.

Suggested Citation

  • Marie-Amelie Morlais, 2006. "Utility Maximization in a jump market model," Papers math/0612181, arXiv.org, revised May 2008.
  • Handle: RePEc:arx:papers:math/0612181
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/math/0612181
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. N. El Karoui & S. Peng & M. C. Quenez, 1997. "Backward Stochastic Differential Equations in Finance," Mathematical Finance, Wiley Blackwell, vol. 7(1), pages 1-71, January.
    2. Royer, Manuela, 2006. "Backward stochastic differential equations with jumps and related non-linear expectations," Stochastic Processes and their Applications, Elsevier, vol. 116(10), pages 1358-1376, October.
    3. Ying Hu & Peter Imkeller & Matthias Muller, 2005. "Utility maximization in incomplete markets," Papers math/0508448, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marina Santacroce & Paola Siri & Barbara Trivellato, 2023. "Forward Backward SDEs Systems for Utility Maximization in Jump Diffusion Models," Papers 2302.08253, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fujii, Masaaki & Takahashi, Akihiko, 2018. "Quadratic–exponential growth BSDEs with jumps and their Malliavin’s differentiability," Stochastic Processes and their Applications, Elsevier, vol. 128(6), pages 2083-2130.
    2. Madan, Dilip & Pistorius, Martijn & Stadje, Mitja, 2016. "Convergence of BSΔEs driven by random walks to BSDEs: The case of (in)finite activity jumps with general driver," Stochastic Processes and their Applications, Elsevier, vol. 126(5), pages 1553-1584.
    3. Roger J. A. Laeven & Mitja Stadje, 2014. "Robust Portfolio Choice and Indifference Valuation," Mathematics of Operations Research, INFORMS, vol. 39(4), pages 1109-1141, November.
    4. Antonelli, Fabio & Mancini, Carlo, 2016. "Solutions of BSDE’s with jumps and quadratic/locally Lipschitz generator," Stochastic Processes and their Applications, Elsevier, vol. 126(10), pages 3124-3144.
    5. Thomas Lim & Marie-Claire Quenez, 2010. "Portfolio optimization in a default model under full/partial information," Papers 1003.6002, arXiv.org, revised Nov 2013.
    6. Jonas Blessing & Michael Kupper & Alessandro Sgarabottolo, 2024. "Discrete approximation of risk-based prices under volatility uncertainty," Papers 2411.00713, arXiv.org.
    7. Arnaud Porchet & Nizar Touzi & Xavier Warin, 2009. "Valuation of power plants by utility indifference and numerical computation," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 70(1), pages 47-75, August.
    8. Zhao, Guoqing, 2009. "Lenglart domination inequalities for g-expectations," Statistics & Probability Letters, Elsevier, vol. 79(22), pages 2338-2342, November.
    9. Nam, Kihun, 2021. "Locally Lipschitz BSDE driven by a continuous martingale a path-derivative approach," Stochastic Processes and their Applications, Elsevier, vol. 141(C), pages 376-411.
    10. Quenez, Marie-Claire & Sulem, Agnès, 2013. "BSDEs with jumps, optimization and applications to dynamic risk measures," Stochastic Processes and their Applications, Elsevier, vol. 123(8), pages 3328-3357.
    11. Dirk Becherer & Martin Buttner & Klebert Kentia, 2016. "On the monotone stability approach to BSDEs with jumps: Extensions, concrete criteria and examples," Papers 1607.06644, arXiv.org, revised Nov 2019.
    12. Fan, Xiliang & Ren, Yong & Zhu, Dongjin, 2010. "A note on the doubly reflected backward stochastic differential equations driven by a Lévy process," Statistics & Probability Letters, Elsevier, vol. 80(7-8), pages 690-696, April.
    13. Dejian Tian, 2022. "Pricing principle via Tsallis relative entropy in incomplete market," Papers 2201.05316, arXiv.org, revised Oct 2022.
    14. Geiss, Stefan & Ylinen, Juha, 2020. "Weighted bounded mean oscillation applied to backward stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 130(6), pages 3711-3752.
    15. Etienne Chevalier & Thomas Lim & Ricardo Romo Roméro, 2014. "Indifference fee rate for variable annuities," Working Papers hal-01017157, HAL.
    16. Gnameho Kossi & Stadje Mitja & Pelsser Antoon, 2024. "A gradient method for high-dimensional BSDEs," Monte Carlo Methods and Applications, De Gruyter, vol. 30(2), pages 183-203.
    17. M. Mania & R. Tevzadze, 2008. "Backward Stochastic PDEs related to the utility maximization problem," Papers 0806.0240, arXiv.org.
    18. Peng, Xingchun & Wei, Linxiao & Hu, Yijun, 2014. "Optimal investment, consumption and proportional reinsurance for an insurer with option type payoff," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 78-86.
    19. Nobuhiro Nakamura, 2004. "Numerical Approach to Asset Pricing Models with Stochastic Differential Utility," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 11(3), pages 267-300, September.
    20. Thibaut Mastrolia, 2016. "Density analysis of non-Markovian BSDEs and applications to biology and finance," Papers 1602.06101, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:math/0612181. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.