IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2107.11896.html
   My bibliography  Save this paper

Reflected backward stochastic differential equations under stopping with an arbitrary random time

Author

Listed:
  • Safa Alsheyab
  • Tahir Choulli

Abstract

This paper addresses reflected backward stochastic differential equations (RBSDE hereafter) that take the form of \begin{eqnarray*} \begin{cases} dY_t=f(t,Y_t, Z_t)d(t\wedge\tau)+Z_tdW_t^{\tau}+dM_t-dK_t,\quad Y_{\tau}=\xi, Y\geq S\quad\mbox{on}\quad \Lbrack0,\tau\Lbrack,\quad \displaystyle\int_0^{\tau}(Y_{s-}-S_{s-})dK_s=0\quad P\mbox{-a.s..}\end{cases} \end{eqnarray*} Here $\tau$ is an arbitrary random time that might not be a stopping time for the filtration $\mathbb F$ generated by the Brownian motion $W$. We consider the filtration $\mathbb G$ resulting from the progressive enlargement of $\mathbb F$ with $\tau$ where this becomes a stopping time, and study the RBSDE under $\mathbb G$. Precisely, we focus on answering the following problems: a) What are the sufficient minimal conditions on the data $(f, \xi, S, \tau)$ that guarantee the existence of the solution of the $\mathbb G$-RBSDE in $L^p$ ($p>1$)? b) How can we estimate the solution in norm using the triplet-data $(f, \xi, S)$? c) Is there an RBSDE under $\mathbb F$ that is intimately related to the current one and how their solutions are related to each other? We prove that for any random time, having a positive Az\'ema supermartingale, there exists a positive discount factor ${\widetilde{\cal E}}$ that is vital in answering our questions without assuming any further assumption on $\tau$, and determining the space for the triplet-data $(f,\xi, S)$ and the space for the solution of the RBSDE as well.

Suggested Citation

  • Safa Alsheyab & Tahir Choulli, 2021. "Reflected backward stochastic differential equations under stopping with an arbitrary random time," Papers 2107.11896, arXiv.org.
  • Handle: RePEc:arx:papers:2107.11896
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2107.11896
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tahir Choulli & Catherine Daveloose & Michèle Vanmaele, 2020. "A martingale representation theorem and valuation of defaultable securities," Mathematical Finance, Wiley Blackwell, vol. 30(4), pages 1527-1564, October.
    2. Nikeghbali, Ashkan, 2008. "How badly are the Burkholder-Davis-Gundy inequalities affected by arbitrary random times?," Statistics & Probability Letters, Elsevier, vol. 78(6), pages 766-770, April.
    3. Yao, Song, 2017. "Lp solutions of backward stochastic differential equations with jumps," Stochastic Processes and their Applications, Elsevier, vol. 127(11), pages 3465-3511.
    4. Anna Aksamit & Tahir Choulli & Jun Deng & Monique Jeanblanc, 2017. "No-arbitrage up to random horizon for quasi-left-continuous models," Finance and Stochastics, Springer, vol. 21(4), pages 1103-1139, October.
    5. N. El Karoui & S. Peng & M. C. Quenez, 1997. "Backward Stochastic Differential Equations in Finance," Mathematical Finance, Wiley Blackwell, vol. 7(1), pages 1-71, January.
    6. Klimsiak, Tomasz, 2015. "Reflected BSDEs on filtered probability spaces," Stochastic Processes and their Applications, Elsevier, vol. 125(11), pages 4204-4241.
    7. Quenez, Marie-Claire & Sulem, Agnès, 2013. "BSDEs with jumps, optimization and applications to dynamic risk measures," Stochastic Processes and their Applications, Elsevier, vol. 123(8), pages 3328-3357.
    8. Royer, Manuela, 2006. "Backward stochastic differential equations with jumps and related non-linear expectations," Stochastic Processes and their Applications, Elsevier, vol. 116(10), pages 1358-1376, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tahir Choulli & Safa’ Alsheyab, 2024. "The Optimal Stopping Problem under a Random Horizon," Mathematics, MDPI, vol. 12(9), pages 1-15, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roxana Dumitrescu & Marie-Claire Quenez & Agn`es Sulem, 2016. "BSDEs with default jump," Papers 1612.05681, arXiv.org, revised Sep 2017.
    2. Anna Aksamit & Libo Li & Marek Rutkowski, 2021. "Generalized BSDEs with random time horizon in a progressively enlarged filtration," Papers 2105.06654, arXiv.org.
    3. Klimsiak, Tomasz & Rzymowski, Maurycy, 2023. "Nonlinear BSDEs on a general filtration with drivers depending on the martingale part of the solution," Stochastic Processes and their Applications, Elsevier, vol. 161(C), pages 424-450.
    4. Stefan Kremsner & Alexander Steinicke, 2022. "$${{\varvec{L}}}^{{\varvec{p}}}$$ L p -Solutions and Comparison Results for Lévy-Driven Backward Stochastic Differential Equations in a Monotonic, General Growth Setting," Journal of Theoretical Probability, Springer, vol. 35(1), pages 231-281, March.
    5. T. Choulli & S. Alsheyab, 2024. "Linear reflected backward stochastic differential equations arising from vulnerable claims in markets with random horizon," Papers 2408.04758, arXiv.org.
    6. Fan, Xiliang & Ren, Yong & Zhu, Dongjin, 2010. "A note on the doubly reflected backward stochastic differential equations driven by a Lévy process," Statistics & Probability Letters, Elsevier, vol. 80(7-8), pages 690-696, April.
    7. Roxana Dumitrescu & Marie-Claire Quenez & Agnès Sulem, 2015. "Optimal Stopping for Dynamic Risk Measures with Jumps and Obstacle Problems," Journal of Optimization Theory and Applications, Springer, vol. 167(1), pages 219-242, October.
    8. Perninge, Magnus, 2024. "Optimal stopping of BSDEs with constrained jumps and related zero-sum games," Stochastic Processes and their Applications, Elsevier, vol. 173(C).
    9. Tahir Choulli & Sina Yansori, 2022. "Log-optimal and numéraire portfolios for market models stopped at a random time," Finance and Stochastics, Springer, vol. 26(3), pages 535-585, July.
    10. T Kruse & A Popier, 2015. "Minimal supersolutions for BSDEs with singular terminal condition and application to optimal position targeting," Papers 1504.01150, arXiv.org, revised Dec 2015.
    11. Alessandro Calvia & Emanuela Rosazza Gianin, 2019. "Risk measures and progressive enlargement of filtration: a BSDE approach," Papers 1904.13257, arXiv.org, revised Mar 2020.
    12. Kruse, T. & Popier, A., 2016. "Minimal supersolutions for BSDEs with singular terminal condition and application to optimal position targeting," Stochastic Processes and their Applications, Elsevier, vol. 126(9), pages 2554-2592.
    13. T Kruse & A Popier, 2015. "Minimal supersolutions for BSDEs with singular terminal condition and application to optimal position targeting," Working Papers hal-01139364, HAL.
    14. Choukroun, Sébastien & Cosso, Andrea & Pham, Huyên, 2015. "Reflected BSDEs with nonpositive jumps, and controller-and-stopper games," Stochastic Processes and their Applications, Elsevier, vol. 125(2), pages 597-633.
    15. Delong, Lukasz & Imkeller, Peter, 2010. "On Malliavin's differentiability of BSDEs with time delayed generators driven by Brownian motions and Poisson random measures," Stochastic Processes and their Applications, Elsevier, vol. 120(9), pages 1748-1775, August.
    16. Mohamed Otmani, 2009. "Reflected BSDE Driven by a Lévy Process," Journal of Theoretical Probability, Springer, vol. 22(3), pages 601-619, September.
    17. Marie-Amelie Morlais, 2006. "Utility Maximization in a jump market model," Papers math/0612181, arXiv.org, revised May 2008.
    18. Abdelkarim Oualaid & Khaled Bahlali & Youssef Ouknine, 2023. "Reflected Backward Stochastic Differential Equations Associated to Jump Markov Processes and Application to Partial Differential Equations," Journal of Theoretical Probability, Springer, vol. 36(3), pages 1400-1436, September.
    19. Guangbao Guo, 2018. "Finite Difference Methods for the BSDEs in Finance," IJFS, MDPI, vol. 6(1), pages 1-15, March.
    20. Tahir Choulli & Catherine Daveloose & Michèle Vanmaele, 2021. "Mortality/Longevity Risk-Minimization with or without Securitization," Mathematics, MDPI, vol. 9(14), pages 1-27, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2107.11896. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.