IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v22y2009i3d10.1007_s10959-009-0229-3.html
   My bibliography  Save this article

Reflected BSDE Driven by a Lévy Process

Author

Listed:
  • Mohamed Otmani

    (Cadi Ayyad University)

Abstract

In this paper, we study the reflected solution of one-dimensional backward stochastic differential equation driven by Teugels martingales and an independent Brownian motion. We prove the existence and uniqueness of the solution using a penalization method combined with Snell envelope theory.

Suggested Citation

  • Mohamed Otmani, 2009. "Reflected BSDE Driven by a Lévy Process," Journal of Theoretical Probability, Springer, vol. 22(3), pages 601-619, September.
  • Handle: RePEc:spr:jotpro:v:22:y:2009:i:3:d:10.1007_s10959-009-0229-3
    DOI: 10.1007/s10959-009-0229-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-009-0229-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-009-0229-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nualart, David & Schoutens, Wim, 2000. "Chaotic and predictable representations for Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 90(1), pages 109-122, November.
    2. N. El Karoui & S. Peng & M. C. Quenez, 1997. "Backward Stochastic Differential Equations in Finance," Mathematical Finance, Wiley Blackwell, vol. 7(1), pages 1-71, January.
    3. Lepeltier, J.-P. & Xu, M., 2005. "Penalization method for reflected backward stochastic differential equations with one r.c.l.l. barrier," Statistics & Probability Letters, Elsevier, vol. 75(1), pages 58-66, November.
    4. Royer, Manuela, 2006. "Backward stochastic differential equations with jumps and related non-linear expectations," Stochastic Processes and their Applications, Elsevier, vol. 116(10), pages 1358-1376, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan, Xiliang & Ren, Yong & Zhu, Dongjin, 2010. "A note on the doubly reflected backward stochastic differential equations driven by a Lévy process," Statistics & Probability Letters, Elsevier, vol. 80(7-8), pages 690-696, April.
    2. Auguste Aman, 2012. "Reflected Generalized Backward Doubly SDEs Driven by Lévy Processes and Applications," Journal of Theoretical Probability, Springer, vol. 25(4), pages 1153-1172, December.
    3. Zhou, Qing & Ren, Yong, 2012. "Reflected backward stochastic differential equations with time delayed generators," Statistics & Probability Letters, Elsevier, vol. 82(5), pages 979-990.
    4. Safa Alsheyab & Tahir Choulli, 2021. "Reflected backward stochastic differential equations under stopping with an arbitrary random time," Papers 2107.11896, arXiv.org.
    5. Kim, Mun-Chol & O, Hun, 2021. "A general comparison theorem for reflected BSDEs," Statistics & Probability Letters, Elsevier, vol. 173(C).
    6. Choukroun, Sébastien & Cosso, Andrea & Pham, Huyên, 2015. "Reflected BSDEs with nonpositive jumps, and controller-and-stopper games," Stochastic Processes and their Applications, Elsevier, vol. 125(2), pages 597-633.
    7. Marzougue, Mohamed, 2021. "Monotonic limit theorem for BSDEs with regulated trajectories," Statistics & Probability Letters, Elsevier, vol. 176(C).
    8. Delong, Lukasz & Imkeller, Peter, 2010. "On Malliavin's differentiability of BSDEs with time delayed generators driven by Brownian motions and Poisson random measures," Stochastic Processes and their Applications, Elsevier, vol. 120(9), pages 1748-1775, August.
    9. Roxana Dumitrescu & Marie-Claire Quenez & Agn`es Sulem, 2016. "BSDEs with default jump," Papers 1612.05681, arXiv.org, revised Sep 2017.
    10. Marie-Amelie Morlais, 2006. "Utility Maximization in a jump market model," Papers math/0612181, arXiv.org, revised May 2008.
    11. Abdelkarim Oualaid & Khaled Bahlali & Youssef Ouknine, 2023. "Reflected Backward Stochastic Differential Equations Associated to Jump Markov Processes and Application to Partial Differential Equations," Journal of Theoretical Probability, Springer, vol. 36(3), pages 1400-1436, September.
    12. Guangbao Guo, 2018. "Finite Difference Methods for the BSDEs in Finance," IJFS, MDPI, vol. 6(1), pages 1-15, March.
    13. Antoon Pelsser & Mitja Stadje, 2014. "Time-Consistent And Market-Consistent Evaluations," Mathematical Finance, Wiley Blackwell, vol. 24(1), pages 25-65, January.
    14. Thomas Lim & Marie-Claire Quenez, 2010. "Portfolio optimization in a default model under full/partial information," Papers 1003.6002, arXiv.org, revised Nov 2013.
    15. Shige Peng & Mingyu Xu, 2006. "Reflected BSDE with a Constraint and a New Doob-Meyer Nonlinear Decomposition," Papers math/0611869, arXiv.org, revised Jul 2008.
    16. Antonis Papapantoleon & Dylan Possamai & Alexandros Saplaouras, 2016. "Existence and uniqueness results for BSDEs with jumps: the whole nine yards," Papers 1607.04214, arXiv.org, revised Nov 2018.
    17. Fujii, Masaaki & Takahashi, Akihiko, 2018. "Quadratic–exponential growth BSDEs with jumps and their Malliavin’s differentiability," Stochastic Processes and their Applications, Elsevier, vol. 128(6), pages 2083-2130.
    18. Madan, Dilip & Pistorius, Martijn & Stadje, Mitja, 2016. "Convergence of BSΔEs driven by random walks to BSDEs: The case of (in)finite activity jumps with general driver," Stochastic Processes and their Applications, Elsevier, vol. 126(5), pages 1553-1584.
    19. Zhao, Guoqing, 2009. "Lenglart domination inequalities for g-expectations," Statistics & Probability Letters, Elsevier, vol. 79(22), pages 2338-2342, November.
    20. Roger J. A. Laeven & Mitja Stadje, 2014. "Robust Portfolio Choice and Indifference Valuation," Mathematics of Operations Research, INFORMS, vol. 39(4), pages 1109-1141, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:22:y:2009:i:3:d:10.1007_s10959-009-0229-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.