IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v127y2017i5p1441-1474.html
   My bibliography  Save this article

Constrained BSDEs representation of the value function in optimal control of pure jump Markov processes

Author

Listed:
  • Bandini, Elena
  • Fuhrman, Marco

Abstract

We consider a classical finite horizon optimal control problem for continuous-time pure jump Markov processes described by means of a rate transition measure depending on a control parameter and controlled by a feedback law. For this class of problems the value function can often be described as the unique solution to the corresponding Hamilton–Jacobi-Bellman equation. We prove a probabilistic representation for the value function, known as nonlinear Feynman–Kac formula. It relates the value function with a backward stochastic differential equation (BSDE) driven by a random measure and with a sign constraint on its martingale part. We also prove existence and uniqueness results for this class of constrained BSDEs. The connection of the control problem with the constrained BSDE uses a control randomization method recently developed by several authors. This approach also allows to prove that the value function of the original non-dominated control problem coincides with the value function of an auxiliary dominated control problem, expressed in terms of equivalent changes of probability measures.

Suggested Citation

  • Bandini, Elena & Fuhrman, Marco, 2017. "Constrained BSDEs representation of the value function in optimal control of pure jump Markov processes," Stochastic Processes and their Applications, Elsevier, vol. 127(5), pages 1441-1474.
  • Handle: RePEc:eee:spapps:v:127:y:2017:i:5:p:1441-1474
    DOI: 10.1016/j.spa.2016.08.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414916301338
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2016.08.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. repec:dau:papers:123456789/5733 is not listed on IDEAS
    2. Pliska, Stanley R., 1975. "Controlled jump processes," Stochastic Processes and their Applications, Elsevier, vol. 3(3), pages 259-282, July.
    3. Confortola, Fulvia & Fuhrman, Marco, 2014. "Backward stochastic differential equations associated to jump Markov processes and applications," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 289-316.
    4. Cosso, Andrea & Fuhrman, Marco & Pham, Huyên, 2016. "Long time asymptotics for fully nonlinear Bellman equations: A backward SDE approach," Stochastic Processes and their Applications, Elsevier, vol. 126(7), pages 1932-1973.
    5. repec:dau:papers:123456789/12195 is not listed on IDEAS
    6. Elie, Romuald & Kharroubi, Idris, 2010. "Probabilistic representation and approximation for coupled systems of variational inequalities," Statistics & Probability Letters, Elsevier, vol. 80(17-18), pages 1388-1396, September.
    7. N. El Karoui & S. Peng & M. C. Quenez, 1997. "Backward Stochastic Differential Equations in Finance," Mathematical Finance, Wiley Blackwell, vol. 7(1), pages 1-71, January.
    8. Fabien Guilbaud & Huyên Pham, 2013. "Optimal high-frequency trading with limit and market orders," Quantitative Finance, Taylor & Francis Journals, vol. 13(1), pages 79-94, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fuhrman, Marco & Morlais, Marie-Amélie, 2020. "Optimal switching problems with an infinite set of modes: An approach by randomization and constrained backward SDEs," Stochastic Processes and their Applications, Elsevier, vol. 130(5), pages 3120-3153.
    2. Bandini, Elena & Cosso, Andrea & Fuhrman, Marco & Pham, Huyên, 2019. "Randomized filtering and Bellman equation in Wasserstein space for partial observation control problem," Stochastic Processes and their Applications, Elsevier, vol. 129(2), pages 674-711.
    3. Bandini, Elena & Russo, Francesco, 2017. "Weak Dirichlet processes with jumps," Stochastic Processes and their Applications, Elsevier, vol. 127(12), pages 4139-4189.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kaitong Hu & Zhenjie Ren & Junjian Yang, 2019. "Principal-agent problem with multiple principals," Working Papers hal-02088486, HAL.
    2. Yan, Tingjin & Chiu, Mei Choi & Wong, Hoi Ying, 2023. "Portfolio liquidation with delayed information," Economic Modelling, Elsevier, vol. 126(C).
    3. Chassagneux, Jean-François & Richou, Adrien, 2019. "Rate of convergence for the discrete-time approximation of reflected BSDEs arising in switching problems," Stochastic Processes and their Applications, Elsevier, vol. 129(11), pages 4597-4637.
    4. Guangbao Guo, 2018. "Finite Difference Methods for the BSDEs in Finance," IJFS, MDPI, vol. 6(1), pages 1-15, March.
    5. Fuhrman, Marco & Morlais, Marie-Amélie, 2020. "Optimal switching problems with an infinite set of modes: An approach by randomization and constrained backward SDEs," Stochastic Processes and their Applications, Elsevier, vol. 130(5), pages 3120-3153.
    6. Fujii, Masaaki & Takahashi, Akihiko, 2018. "Quadratic–exponential growth BSDEs with jumps and their Malliavin’s differentiability," Stochastic Processes and their Applications, Elsevier, vol. 128(6), pages 2083-2130.
    7. Ewald, Christian Oliver & Taub, Bart, 2022. "Real options, risk aversion and markets: A corporate finance perspective," Journal of Corporate Finance, Elsevier, vol. 72(C).
    8. Yaghobipour, S. & Yarahmadi, M., 2018. "Optimal control design for a class of quantum stochastic systems with financial applications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 507-522.
    9. Lepeltier, J.-P. & Xu, M., 2005. "Penalization method for reflected backward stochastic differential equations with one r.c.l.l. barrier," Statistics & Probability Letters, Elsevier, vol. 75(1), pages 58-66, November.
    10. Fujii, Masaaki & Takahashi, Akihiko, 2019. "Solving backward stochastic differential equations with quadratic-growth drivers by connecting the short-term expansions," Stochastic Processes and their Applications, Elsevier, vol. 129(5), pages 1492-1532.
    11. Bouchard Bruno & Tan Xiaolu & Warin Xavier & Zou Yiyi, 2017. "Numerical approximation of BSDEs using local polynomial drivers and branching processes," Monte Carlo Methods and Applications, De Gruyter, vol. 23(4), pages 241-263, December.
    12. Bi, Junna & Jin, Hanqing & Meng, Qingbin, 2018. "Behavioral mean-variance portfolio selection," European Journal of Operational Research, Elsevier, vol. 271(2), pages 644-663.
    13. Fan, ShengJun, 2016. "Existence of solutions to one-dimensional BSDEs with semi-linear growth and general growth generators," Statistics & Probability Letters, Elsevier, vol. 109(C), pages 7-15.
    14. Masaaki Fujii & Akihiko Takahashi, 2015. "Perturbative Expansion Technique for Non-linear FBSDEs with Interacting Particle Method," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 22(3), pages 283-304, September.
    15. Bartosz Jaroszkowski & Max Jensen, 2021. "Valuation of European Options under an Uncertain Market Price of Volatility Risk," Papers 2105.09581, arXiv.org.
    16. Kupper, Michael & Luo, Peng & Tangpi, Ludovic, 2019. "Multidimensional Markovian FBSDEs with super-quadratic growth," Stochastic Processes and their Applications, Elsevier, vol. 129(3), pages 902-923.
    17. Mingyu Xu, 2007. "Reflected Backward SDEs with Two Barriers Under Monotonicity and General Increasing Conditions," Journal of Theoretical Probability, Springer, vol. 20(4), pages 1005-1039, December.
    18. Fan, ShengJun & Jiang, Long & Tian, DeJian, 2011. "One-dimensional BSDEs with finite and infinite time horizons," Stochastic Processes and their Applications, Elsevier, vol. 121(3), pages 427-440, March.
    19. Gobet, Emmanuel & Labart, Céline, 2007. "Error expansion for the discretization of backward stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 117(7), pages 803-829, July.
    20. Han, Xingyu, 2018. "Pricing and hedging vulnerable option with funding costs and collateral," Chaos, Solitons & Fractals, Elsevier, vol. 112(C), pages 103-115.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:127:y:2017:i:5:p:1441-1474. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.