IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v126y2016i4p1036-1065.html
   My bibliography  Save this article

Limit theorems for quadratic forms of Lévy-driven continuous-time linear processes

Author

Listed:
  • Bai, Shuyang
  • Ginovyan, Mamikon S.
  • Taqqu, Murad S.

Abstract

We study the asymptotic behavior of a suitable normalized stochastic process {QT(t),t∈[0,1]}. This stochastic process is generated by a Toeplitz type quadratic functional of a Lévy-driven continuous-time linear process. We show that under some Lp-type conditions imposed on the covariance function of the model and the kernel of the quadratic functional, the process QT(t) obeys a central limit theorem, that is, the finite-dimensional distributions of the standard T normalized process QT(t) tend to those of a normalized standard Brownian motion. In contrast, when the covariance function of the model and the kernel of the quadratic functional have a slow power decay, then we have a non-central limit theorem for QT(t), that is, the finite-dimensional distributions of the process QT(t), normalized by Tγ for some γ>1/2, tend to those of a non-Gaussian non-stationary-increment self-similar process which can be represented by a double stochastic Wiener–Itô integral on R2.

Suggested Citation

  • Bai, Shuyang & Ginovyan, Mamikon S. & Taqqu, Murad S., 2016. "Limit theorems for quadratic forms of Lévy-driven continuous-time linear processes," Stochastic Processes and their Applications, Elsevier, vol. 126(4), pages 1036-1065.
  • Handle: RePEc:eee:spapps:v:126:y:2016:i:4:p:1036-1065
    DOI: 10.1016/j.spa.2015.10.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414915002586
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2015.10.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bai, Shuyang & Ginovyan, Mamikon S. & Taqqu, Murad S., 2015. "Functional limit theorems for Toeplitz quadratic functionals of continuous time Gaussian stationary processes," Statistics & Probability Letters, Elsevier, vol. 104(C), pages 58-67.
    2. P. Brockwell, 2001. "Lévy-Driven Carma Processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 53(1), pages 113-124, March.
    3. P. Brockwell, 2014. "Recent results in the theory and applications of CARMA processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(4), pages 647-685, August.
    4. Pipiras, Vladas & Taqqu, Murad S., 2010. "Regularization and integral representations of Hermite processes," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 2014-2023, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. A. V. Ivanov & N. N. Leonenko & I. V. Orlovskyi, 2020. "On the Whittle estimator for linear random noise spectral density parameter in continuous-time nonlinear regression models," Statistical Inference for Stochastic Processes, Springer, vol. 23(1), pages 129-169, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sikora, Grzegorz & Michalak, Anna & Bielak, Łukasz & Miśta, Paweł & Wyłomańska, Agnieszka, 2019. "Stochastic modeling of currency exchange rates with novel validation techniques," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1202-1215.
    2. Szarek, Dawid & Bielak, Łukasz & Wyłomańska, Agnieszka, 2020. "Long-term prediction of the metals’ prices using non-Gaussian time-inhomogeneous stochastic process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).
    3. Basse-O’Connor, Andreas & Nielsen, Mikkel Slot & Pedersen, Jan & Rohde, Victor, 2019. "Multivariate stochastic delay differential equations and CAR representations of CARMA processes," Stochastic Processes and their Applications, Elsevier, vol. 129(10), pages 4119-4143.
    4. Müller, Gernot & Seibert, Armin, 2019. "Bayesian estimation of stable CARMA spot models for electricity prices," Energy Economics, Elsevier, vol. 78(C), pages 267-277.
    5. Reiichiro Kawai, 2017. "Sample Path Generation of Lévy-Driven Continuous-Time Autoregressive Moving Average Processes," Methodology and Computing in Applied Probability, Springer, vol. 19(1), pages 175-211, March.
    6. Asmerilda Hitaj & Lorenzo Mercuri & Edit Rroji, 2019. "Lévy CARMA models for shocks in mortality," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(1), pages 205-227, June.
    7. Shuyang Bai & Murad S. Taqqu, 2013. "Multivariate Limit Theorems In The Context Of Long-Range Dependence," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(6), pages 717-743, November.
    8. Mercuri, Lorenzo & Perchiazzo, Andrea & Rroji, Edit, 2024. "A Hawkes model with CARMA(p,q) intensity," Insurance: Mathematics and Economics, Elsevier, vol. 116(C), pages 1-26.
    9. Pham, Viet Son, 2020. "Lévy-driven causal CARMA random fields," Stochastic Processes and their Applications, Elsevier, vol. 130(12), pages 7547-7574.
    10. Michael C. Fu & Bingqing Li & Rongwen Wu & Tianqi Zhang, 2020. "Option Pricing Under a Discrete-Time Markov Switching Stochastic Volatility with Co-Jump Model," Papers 2006.15054, arXiv.org.
    11. Brockwell, Peter J. & Lindner, Alexander, 2009. "Existence and uniqueness of stationary Lévy-driven CARMA processes," Stochastic Processes and their Applications, Elsevier, vol. 119(8), pages 2660-2681, August.
    12. Bai, Shuyang & Taqqu, Murad S., 2014. "Generalized Hermite processes, discrete chaos and limit theorems," Stochastic Processes and their Applications, Elsevier, vol. 124(4), pages 1710-1739.
    13. Davis, Richard A. & Mikosch, Thomas, 2008. "Extreme value theory for space-time processes with heavy-tailed distributions," Stochastic Processes and their Applications, Elsevier, vol. 118(4), pages 560-584, April.
    14. Chambers, MJ & McCrorie, JR & Thornton, MA, 2017. "Continuous Time Modelling Based on an Exact Discrete Time Representation," Economics Discussion Papers 20497, University of Essex, Department of Economics.
    15. Marquardt, Tina, 2007. "Multivariate fractionally integrated CARMA processes," Journal of Multivariate Analysis, Elsevier, vol. 98(9), pages 1705-1725, October.
    16. Fred Espen Benth & Heidar Eyjolfsson, 2015. "Representation and approximation of ambit fields in Hilbert space," Papers 1509.08272, arXiv.org.
    17. Brockwell, Peter J. & Lindner, Alexander, 2015. "CARMA processes as solutions of integral equations," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 221-227.
    18. P. Brockwell, 2014. "Recent results in the theory and applications of CARMA processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(4), pages 647-685, August.
    19. Tucker McElroy, 2013. "Forecasting continuous-time processes with applications to signal extraction," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(3), pages 439-456, June.
    20. Fasen, Vicky & Fuchs, Florian, 2013. "On the limit behavior of the periodogram of high-frequency sampled stable CARMA processes," Stochastic Processes and their Applications, Elsevier, vol. 123(1), pages 229-273.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:126:y:2016:i:4:p:1036-1065. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.