IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v104y2015icp58-67.html
   My bibliography  Save this article

Functional limit theorems for Toeplitz quadratic functionals of continuous time Gaussian stationary processes

Author

Listed:
  • Bai, Shuyang
  • Ginovyan, Mamikon S.
  • Taqqu, Murad S.

Abstract

The paper establishes weak convergence in C[0,1] of normalized stochastic processes, generated by Toeplitz type quadratic functionals of a continuous time Gaussian stationary process, exhibiting long-range dependence. Both central and non-central functional limit theorems are obtained.

Suggested Citation

  • Bai, Shuyang & Ginovyan, Mamikon S. & Taqqu, Murad S., 2015. "Functional limit theorems for Toeplitz quadratic functionals of continuous time Gaussian stationary processes," Statistics & Probability Letters, Elsevier, vol. 104(C), pages 58-67.
  • Handle: RePEc:eee:stapro:v:104:y:2015:i:c:p:58-67
    DOI: 10.1016/j.spl.2015.04.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715215001534
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2015.04.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Terrin, Norma & Taqqu, Murad S., 1991. "Convergence to a Gaussian limit as the normalization exponent tends to," Statistics & Probability Letters, Elsevier, vol. 11(5), pages 419-427, May.
    2. Pipiras, Vladas & Taqqu, Murad S., 2010. "Regularization and integral representations of Hermite processes," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 2014-2023, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bai, Shuyang & Ginovyan, Mamikon S. & Taqqu, Murad S., 2016. "Limit theorems for quadratic forms of Lévy-driven continuous-time linear processes," Stochastic Processes and their Applications, Elsevier, vol. 126(4), pages 1036-1065.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuyang Bai & Murad S. Taqqu, 2013. "Multivariate Limit Theorems In The Context Of Long-Range Dependence," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(6), pages 717-743, November.
    2. Bai, Shuyang & Taqqu, Murad S., 2014. "Generalized Hermite processes, discrete chaos and limit theorems," Stochastic Processes and their Applications, Elsevier, vol. 124(4), pages 1710-1739.
    3. Stoyan V. Stoyanov & Svetlozar T. Rachev & Stefan Mittnik & Frank J. Fabozzi, 2019. "Pricing Derivatives In Hermite Markets," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(06), pages 1-27, September.
    4. Bardet, Jean-Marc & Tudor, Ciprian, 2014. "Asymptotic behavior of the Whittle estimator for the increments of a Rosenblatt process," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 1-16.
    5. Bai, Shuyang & Taqqu, Murad S., 2013. "Multivariate limits of multilinear polynomial-form processes with long memory," Statistics & Probability Letters, Elsevier, vol. 83(11), pages 2473-2485.
    6. Maejima, Makoto & Tudor, Ciprian A., 2013. "On the distribution of the Rosenblatt process," Statistics & Probability Letters, Elsevier, vol. 83(6), pages 1490-1495.
    7. Bai, Shuyang & Ginovyan, Mamikon S. & Taqqu, Murad S., 2016. "Limit theorems for quadratic forms of Lévy-driven continuous-time linear processes," Stochastic Processes and their Applications, Elsevier, vol. 126(4), pages 1036-1065.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:104:y:2015:i:c:p:58-67. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.