IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v78y2019icp267-277.html
   My bibliography  Save this article

Bayesian estimation of stable CARMA spot models for electricity prices

Author

Listed:
  • Müller, Gernot
  • Seibert, Armin

Abstract

We develop a Bayesian estimation procedure for the electricity spot price model in Benth et al. (2014). This model incorporates a trend and seasonality component, a stable CARMA process for the price spikes, and an additional Lévy process for mid-range price level changes. Our MCMC algorithm has two advantages over the existing stepwise estimation procedure presented in Benth et al. (2014): First, since our algorithm produces samples from the full posterior distribution over all parameters, we can estimate the parameters much more accurately, which is shown in simulation studies. Second, we can provide accuracy measures as credibility intervals in addition to the point estimates. The approach is quite general, so that it can be adapted also to other similar pricing models. For illustration, we analyse spot and future prices from the EEX using the new Bayesian method and provide estimates for the risk premium together with credibility regions.

Suggested Citation

  • Müller, Gernot & Seibert, Armin, 2019. "Bayesian estimation of stable CARMA spot models for electricity prices," Energy Economics, Elsevier, vol. 78(C), pages 267-277.
  • Handle: RePEc:eee:eneeco:v:78:y:2019:i:c:p:267-277
    DOI: 10.1016/j.eneco.2018.10.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988318304183
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2018.10.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Berk, K. & Hoffmann, A. & Müller, A., 2018. "Probabilistic forecasting of industrial electricity load with regime switching behavior," International Journal of Forecasting, Elsevier, vol. 34(2), pages 147-162.
    2. Benth, Fred Espen & Klüppelberg, Claudia & Müller, Gernot & Vos, Linda, 2014. "Futures pricing in electricity markets based on stable CARMA spot models," Energy Economics, Elsevier, vol. 44(C), pages 392-406.
    3. Fred Espen Benth & Jūratė Šaltytė Benth & Steen Koekebakker, 2008. "Stochastic Modeling of Electricity and Related Markets," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 6811, September.
    4. Borovkova, Svetlana & Schmeck, Maren Diane, 2017. "Electricity price modeling with stochastic time change," Energy Economics, Elsevier, vol. 63(C), pages 51-65.
    5. Fred Benth & Nils Detering, 2015. "Pricing and hedging Asian-style options on energy," Finance and Stochastics, Springer, vol. 19(4), pages 849-889, October.
    6. P. Brockwell, 2001. "Lévy-Driven Carma Processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 53(1), pages 113-124, March.
    7. Rafal Weron, 2006. "Modeling and Forecasting Electricity Loads and Prices: A Statistical Approach," HSC Books, Hugo Steinhaus Center, Wroclaw University of Technology, number hsbook0601, December.
    8. P. Brockwell, 2014. "Recent results in the theory and applications of CARMA processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(4), pages 647-685, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shao, Zhen & Zheng, Qingru & Yang, Shanlin & Gao, Fei & Cheng, Manli & Zhang, Qiang & Liu, Chen, 2020. "Modeling and forecasting the electricity clearing price: A novel BELM based pattern classification framework and a comparative analytic study on multi-layer BELM and LSTM," Energy Economics, Elsevier, vol. 86(C).
    2. Sabarathinam Srinivasan & Suresh Kumarasamy & Zacharias E. Andreadakis & Pedro G. Lind, 2023. "Artificial Intelligence and Mathematical Models of Power Grids Driven by Renewable Energy Sources: A Survey," Energies, MDPI, vol. 16(14), pages 1-56, July.
    3. Jürgen Kampf & Georgiy Shevchenko & Evgeny Spodarev, 2021. "Nonparametric estimation of the kernel function of symmetric stable moving average random functions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(2), pages 337-367, April.
    4. Rowińska, Paulina A. & Veraart, Almut E.D. & Gruet, Pierre, 2021. "A multi-factor approach to modelling the impact of wind energy on electricity spot prices," Energy Economics, Elsevier, vol. 104(C).
    5. Sirin, Selahattin Murat & Camadan, Ercument & Erten, Ibrahim Etem & Zhang, Alex Hongliang, 2023. "Market failure or politics? Understanding the motives behind regulatory actions to address surging electricity prices," Energy Policy, Elsevier, vol. 180(C).
    6. Qiao, Weibiao & Yang, Zhe, 2020. "Forecast the electricity price of U.S. using a wavelet transform-based hybrid model," Energy, Elsevier, vol. 193(C).
    7. Donglan Liu & Xin Liu & Kun Guo & Qiang Ji & Yingxian Chang, 2023. "Spillover Effects among Electricity Prices, Traditional Energy Prices and Carbon Market under Climate Risk," IJERPH, MDPI, vol. 20(2), pages 1-18, January.
    8. Nikola Krečar & Andrej F. Gubina, 2020. "Risk mitigation in the electricity market driven by new renewable energy sources," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 9(1), January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Algieri, Bernardina & Leccadito, Arturo & Tunaru, Diana, 2021. "Risk premia in electricity derivatives markets," Energy Economics, Elsevier, vol. 100(C).
    2. Lingohr, Daniel & Müller, Gernot, 2021. "Conditionally independent increment processes for modeling electricity prices with regard to renewable power generation," Energy Economics, Elsevier, vol. 103(C).
    3. Adland, Roar & Benth, Fred Espen & Koekebakker, Steen, 2018. "Multivariate modeling and analysis of regional ocean freight rates," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 113(C), pages 194-221.
    4. Deschatre, Thomas & Féron, Olivier & Gruet, Pierre, 2021. "A survey of electricity spot and futures price models for risk management applications," Energy Economics, Elsevier, vol. 102(C).
    5. Rafał Weron, 2009. "Heavy-tails and regime-switching in electricity prices," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 69(3), pages 457-473, July.
    6. Karol Pilot & Alicja Ganczarek-Gamrot & Krzysztof Kania, 2024. "Dealing with Anomalies in Day-Ahead Market Prediction Using Machine Learning Hybrid Model," Energies, MDPI, vol. 17(17), pages 1-20, September.
    7. Sikora, Grzegorz & Michalak, Anna & Bielak, Łukasz & Miśta, Paweł & Wyłomańska, Agnieszka, 2019. "Stochastic modeling of currency exchange rates with novel validation techniques," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1202-1215.
    8. Mercuri, Lorenzo & Perchiazzo, Andrea & Rroji, Edit, 2024. "A Hawkes model with CARMA(p,q) intensity," Insurance: Mathematics and Economics, Elsevier, vol. 116(C), pages 1-26.
    9. Péter Kevei, 2018. "Asymptotic moving average representation of high-frequency sampled multivariate CARMA processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(2), pages 467-487, April.
    10. Pham, Viet Son, 2020. "Lévy-driven causal CARMA random fields," Stochastic Processes and their Applications, Elsevier, vol. 130(12), pages 7547-7574.
    11. Tegnér, Martin & Ernstsen, Rune Ramsdal & Skajaa, Anders & Poulsen, Rolf, 2017. "Risk-minimisation in electricity markets: Fixed price, unknown consumption," Energy Economics, Elsevier, vol. 68(C), pages 423-439.
    12. Piccirilli, Marco & Schmeck, Maren Diane & Vargiolu, Tiziano, 2021. "Capturing the power options smile by an additive two-factor model for overlapping futures prices," Energy Economics, Elsevier, vol. 95(C).
    13. Rafal Weron & Florian Ziel, 2018. "Electricity price forecasting," HSC Research Reports HSC/18/08, Hugo Steinhaus Center, Wroclaw University of Technology.
    14. Wolfgang Karl Härdle & Brenda López Cabrera & Awdesch Melzer, 2021. "Pricing wind power futures," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(4), pages 1083-1102, August.
    15. Fred Espen Benth & Claudia Kluppelberg & Gernot Muller & Linda Vos, 2012. "Futures pricing in electricity markets based on stable CARMA spot models," Papers 1201.1151, arXiv.org.
    16. Bai, Shuyang & Ginovyan, Mamikon S. & Taqqu, Murad S., 2016. "Limit theorems for quadratic forms of Lévy-driven continuous-time linear processes," Stochastic Processes and their Applications, Elsevier, vol. 126(4), pages 1036-1065.
    17. Szarek, Dawid & Bielak, Łukasz & Wyłomańska, Agnieszka, 2020. "Long-term prediction of the metals’ prices using non-Gaussian time-inhomogeneous stochastic process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).
    18. Nikola Krečar & Andrej F. Gubina, 2020. "Risk mitigation in the electricity market driven by new renewable energy sources," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 9(1), January.
    19. Fred Espen Benth & Heidar Eyjolfsson, 2015. "Representation and approximation of ambit fields in Hilbert space," Papers 1509.08272, arXiv.org.
    20. Basse-O’Connor, Andreas & Nielsen, Mikkel Slot & Pedersen, Jan & Rohde, Victor, 2019. "Multivariate stochastic delay differential equations and CAR representations of CARMA processes," Stochastic Processes and their Applications, Elsevier, vol. 129(10), pages 4119-4143.

    More about this item

    Keywords

    α -Stable process; CARMA model; Electricity prices; Futures prices; Markov chain Monte Carlo; Seasonality; Stable density approximation;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:78:y:2019:i:c:p:267-277. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.