IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v125y2015i8p2937-2954.html
   My bibliography  Save this article

Buffer-overflows: Joint limit laws of undershoots and overshoots of reflected processes

Author

Listed:
  • Mijatović, Aleksandar
  • Pistorius, Martijn

Abstract

Let τ(x) be the epoch of first entry into the interval (x,∞), x>0, of the reflected process Y of a Lévy process X, and define the overshoot Z(x)=Y(τ(x))−x and undershoot z(x)=x−Y(τ(x)−) of Y at the first-passage time over the level x. In this paper we establish, separately under the Cramér and positive drift assumptions, the existence of the weak limit of (z(x),Z(x)) as x tends to infinity and provide explicit formulas for their joint CDFs in terms of the Lévy measure of X and the renewal measure of the dual of X. Furthermore we identify explicit stochastic representations for the limit laws. We apply our results to analyse the behaviour of the classical M/G/1 queueing system at buffer-overflow, both in a stable and unstable case.

Suggested Citation

  • Mijatović, Aleksandar & Pistorius, Martijn, 2015. "Buffer-overflows: Joint limit laws of undershoots and overshoots of reflected processes," Stochastic Processes and their Applications, Elsevier, vol. 125(8), pages 2937-2954.
  • Handle: RePEc:eee:spapps:v:125:y:2015:i:8:p:2937-2954
    DOI: 10.1016/j.spa.2015.02.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414915000435
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2015.02.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mijatović, Aleksandar & Pistorius, Martijn R., 2012. "On the drawdown of completely asymmetric Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 122(11), pages 3812-3836.
    2. Bertoin, J. & van Harn, K. & Steutel, F. W., 1999. "Renewal theory and level passage by subordinators," Statistics & Probability Letters, Elsevier, vol. 45(1), pages 65-69, October.
    3. Bertoin, J. & Doney, R. A., 1994. "Cramer's estimate for Lévy processes," Statistics & Probability Letters, Elsevier, vol. 21(5), pages 363-365, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Griffin, Philip S., 2020. "General tax structures for a Lévy insurance risk process under the Cramér condition," Stochastic Processes and their Applications, Elsevier, vol. 130(3), pages 1368-1387.
    2. Griffin, Philip S., 2022. "Path decomposition of a reflected Lévy process on first passage over high levels," Stochastic Processes and their Applications, Elsevier, vol. 145(C), pages 29-47.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baurdoux, E.J. & Palmowski, Z. & Pistorius, M.R., 2017. "On future drawdowns of Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 127(8), pages 2679-2698.
    2. Griffin, Philip S., 2020. "General tax structures for a Lévy insurance risk process under the Cramér condition," Stochastic Processes and their Applications, Elsevier, vol. 130(3), pages 1368-1387.
    3. Huillet, Thierry & Möhle, Martin, 2013. "On the extended Moran model and its relation to coalescents with multiple collisions," Theoretical Population Biology, Elsevier, vol. 87(C), pages 5-14.
    4. Ghorbel, M. & Huillet, T., 2005. "Fragment size distributions in random fragmentations with cutoff," Statistics & Probability Letters, Elsevier, vol. 71(1), pages 47-60, January.
    5. Ceren Vardar-Acar & Mine Çağlar & Florin Avram, 2021. "Maximum Drawdown and Drawdown Duration of Spectrally Negative Lévy Processes Decomposed at Extremes," Journal of Theoretical Probability, Springer, vol. 34(3), pages 1486-1505, September.
    6. Magdziarz, Marcin, 2009. "Stochastic representation of subdiffusion processes with time-dependent drift," Stochastic Processes and their Applications, Elsevier, vol. 119(10), pages 3238-3252, October.
    7. Arista, Jonas & Rivero, Víctor, 2023. "Implicit renewal theory for exponential functionals of Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 163(C), pages 262-287.
    8. Landriault, David & Li, Bin & Lkabous, Mohamed Amine, 2021. "On the analysis of deep drawdowns for the Lévy insurance risk model," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 147-155.
    9. Zhang, Gongqiu & Li, Lingfei, 2023. "A general method for analysis and valuation of drawdown risk," Journal of Economic Dynamics and Control, Elsevier, vol. 152(C).
    10. Zhang, Xiang & Li, Lingfei & Zhang, Gongqiu, 2021. "Pricing American drawdown options under Markov models," European Journal of Operational Research, Elsevier, vol. 293(3), pages 1188-1205.
    11. Asghari, N.M. & Dȩbicki, K. & Mandjes, M., 2015. "Exact tail asymptotics of the supremum attained by a Lévy process," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 180-184.
    12. Landriault, David & Li, Bin & Li, Shu, 2015. "Analysis of a drawdown-based regime-switching Lévy insurance model," Insurance: Mathematics and Economics, Elsevier, vol. 60(C), pages 98-107.
    13. Jérôme Spielmann, 2018. "Classification of the Bounds on the Probability of Ruin for Lévy Processes with Light-tailed Jumps," Working Papers hal-01597828, HAL.
    14. Griffin, Philip S. & Maller, Ross A. & Roberts, Dale, 2013. "Finite time ruin probabilities for tempered stable insurance risk processes," Insurance: Mathematics and Economics, Elsevier, vol. 53(2), pages 478-489.
    15. Palmowski, Zbigniew & Pistorius, Martijn, 2009. "Cramér asymptotics for finite time first passage probabilities of general Lévy processes," Statistics & Probability Letters, Elsevier, vol. 79(16), pages 1752-1758, August.
    16. Salminen, Paavo & Vallois, Pierre, 2020. "On the maximum increase and decrease of one-dimensional diffusions," Stochastic Processes and their Applications, Elsevier, vol. 130(9), pages 5592-5604.
    17. Griffin, Philip S., 2022. "Path decomposition of a reflected Lévy process on first passage over high levels," Stochastic Processes and their Applications, Elsevier, vol. 145(C), pages 29-47.
    18. Li, Shu & Zhou, Xiaowen, 2022. "The Parisian and ultimate drawdowns of Lévy insurance models," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 140-160.
    19. Gapeev, Pavel V. & Rodosthenous, Neofytos, 2016. "Perpetual American options in diffusion-type models with running maxima and drawdowns," Stochastic Processes and their Applications, Elsevier, vol. 126(7), pages 2038-2061.
    20. Griffin, Philip S. & Roberts, Dale O., 2016. "Sample paths of a Lévy process leading to first passage over high levels in finite time," Stochastic Processes and their Applications, Elsevier, vol. 126(5), pages 1331-1352.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:125:y:2015:i:8:p:2937-2954. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.