IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v21y1994i5p363-365.html
   My bibliography  Save this article

Cramer's estimate for Lévy processes

Author

Listed:
  • Bertoin, J.
  • Doney, R. A.

Abstract

It is shown that the usual method of establishing Cramer's estimate also works for Lévy processes.

Suggested Citation

  • Bertoin, J. & Doney, R. A., 1994. "Cramer's estimate for Lévy processes," Statistics & Probability Letters, Elsevier, vol. 21(5), pages 363-365, December.
  • Handle: RePEc:eee:stapro:v:21:y:1994:i:5:p:363-365
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0167-7152(94)00032-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. J'er^ome Spielmann, 2017. "Classification of the Bounds on the Probability of Ruin for L{\'e}vy Processes with Light-tailed Jumps," Papers 1709.10295, arXiv.org, revised Feb 2018.
    2. Asghari, N.M. & Dȩbicki, K. & Mandjes, M., 2015. "Exact tail asymptotics of the supremum attained by a Lévy process," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 180-184.
    3. Chaumont, Loïc & Rivero, Víctor, 2007. "On some transformations between positive self-similar Markov processes," Stochastic Processes and their Applications, Elsevier, vol. 117(12), pages 1889-1909, December.
    4. Mijatović, Aleksandar & Pistorius, Martijn, 2015. "Buffer-overflows: Joint limit laws of undershoots and overshoots of reflected processes," Stochastic Processes and their Applications, Elsevier, vol. 125(8), pages 2937-2954.
    5. Arista, Jonas & Rivero, Víctor, 2023. "Implicit renewal theory for exponential functionals of Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 163(C), pages 262-287.
    6. Palmowski, Zbigniew & Pistorius, Martijn, 2009. "Cramér asymptotics for finite time first passage probabilities of general Lévy processes," Statistics & Probability Letters, Elsevier, vol. 79(16), pages 1752-1758, August.
    7. Baurdoux, E.J. & Palmowski, Z. & Pistorius, M.R., 2017. "On future drawdowns of Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 127(8), pages 2679-2698.
    8. Griffin, Philip S. & Maller, Ross A. & Schaik, Kees van, 2012. "Asymptotic distributions of the overshoot and undershoots for the Lévy insurance risk process in the Cramér and convolution equivalent cases," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 382-392.
    9. Boxma, Onno & Kella, Offer & Mandjes, Michel, 2023. "On fluctuation-theoretic decompositions via Lindley-type recursions," Stochastic Processes and their Applications, Elsevier, vol. 165(C), pages 316-336.
    10. Fotopoulos, Stergios & Jandhyala, Venkata & Wang, Jun, 2015. "On the joint distribution of the supremum functional and its last occurrence for subordinated linear Brownian motion," Statistics & Probability Letters, Elsevier, vol. 106(C), pages 149-156.
    11. Griffin, Philip S., 2020. "General tax structures for a Lévy insurance risk process under the Cramér condition," Stochastic Processes and their Applications, Elsevier, vol. 130(3), pages 1368-1387.
    12. Griffin, Philip S. & Roberts, Dale O., 2016. "Sample paths of a Lévy process leading to first passage over high levels in finite time," Stochastic Processes and their Applications, Elsevier, vol. 126(5), pages 1331-1352.
    13. Irmina Czarna & Zbigniew Palmowski, 2010. "Ruin probability with Parisian delay for a spectrally negative L\'evy risk process," Papers 1003.4299, arXiv.org, revised Apr 2010.
    14. Griffin, Philip S., 2022. "Path decomposition of a reflected Lévy process on first passage over high levels," Stochastic Processes and their Applications, Elsevier, vol. 145(C), pages 29-47.
    15. Korshunov, Dmitry, 2018. "On subexponential tails for the maxima of negatively driven compound renewal and Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 128(4), pages 1316-1332.
    16. Jérôme Spielmann, 2018. "Classification of the Bounds on the Probability of Ruin for Lévy Processes with Light-tailed Jumps," Working Papers hal-01597828, HAL.
    17. Griffin, Philip S. & Maller, Ross A. & Roberts, Dale, 2013. "Finite time ruin probabilities for tempered stable insurance risk processes," Insurance: Mathematics and Economics, Elsevier, vol. 53(2), pages 478-489.
    18. Palmowski, Zbigniew & Vlasiou, Maria, 2011. "A Lévy input model with additional state-dependent services," Stochastic Processes and their Applications, Elsevier, vol. 121(7), pages 1546-1564, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:21:y:1994:i:5:p:363-365. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.