IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v71y2005i1p47-60.html
   My bibliography  Save this article

Fragment size distributions in random fragmentations with cutoff

Author

Listed:
  • Ghorbel, M.
  • Huillet, T.

Abstract

We consider the following fragmentation model with cutoff: a fragment with initial size x0>1 splits into b>1 daughter fragments with random sizes, the partition law of which has exchangeable distribution. In subsequent steps, fragmentation proceeds independently for each sub-fragments whose sizes are bigger than some cutoff value xc=1 only. This process naturally terminates with probability 1. The size of a fragment is the random mass attached to a leaf of a "typical" path of the full (finite) fragmentation tree. The height's law of typical paths is first analyzed, using analytic and renewal processes techniques. We then compute fragments' size limiting distribution (x0[short up arrow][infinity]), for various senses of a typical path. Next, we exhibit some of its statistical features, essentially in the case of the exchangeable Dirichlet partition model.

Suggested Citation

  • Ghorbel, M. & Huillet, T., 2005. "Fragment size distributions in random fragmentations with cutoff," Statistics & Probability Letters, Elsevier, vol. 71(1), pages 47-60, January.
  • Handle: RePEc:eee:stapro:v:71:y:2005:i:1:p:47-60
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(04)00283-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hosam Mahmoud, 2003. "One-sided variations on binary search trees," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 55(4), pages 885-900, December.
    2. Thierry Huillet & Servet Martinez, 2003. "Sampling from Finite Random Partitions," Methodology and Computing in Applied Probability, Springer, vol. 5(4), pages 467-492, December.
    3. Bertoin, J. & van Harn, K. & Steutel, F. W., 1999. "Renewal theory and level passage by subordinators," Statistics & Probability Letters, Elsevier, vol. 45(1), pages 65-69, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huillet, Thierry & Möhle, Martin, 2013. "On the extended Moran model and its relation to coalescents with multiple collisions," Theoretical Population Biology, Elsevier, vol. 87(C), pages 5-14.
    2. Magdziarz, Marcin, 2009. "Stochastic representation of subdiffusion processes with time-dependent drift," Stochastic Processes and their Applications, Elsevier, vol. 119(10), pages 3238-3252, October.
    3. John E. Kobza & Sheldon H. Jacobson & Diane E. Vaughan, 2007. "A Survey of the Coupon Collector’s Problem with Random Sample Sizes," Methodology and Computing in Applied Probability, Springer, vol. 9(4), pages 573-584, December.
    4. Chi, Zhiyi, 2016. "On exact sampling of the first passage event of a Lévy process with infinite Lévy measure and bounded variation," Stochastic Processes and their Applications, Elsevier, vol. 126(4), pages 1124-1144.
    5. Mijatović, Aleksandar & Pistorius, Martijn, 2015. "Buffer-overflows: Joint limit laws of undershoots and overshoots of reflected processes," Stochastic Processes and their Applications, Elsevier, vol. 125(8), pages 2937-2954.
    6. M. Ghorbel & M. Farah, 2015. "Dirichlet partition on symmetric matrices," Indian Journal of Pure and Applied Mathematics, Springer, vol. 46(1), pages 73-83, February.
    7. Budd, J.K. & Taylor, P.G., 2019. "Bounds for the solution to the single-period inventory model with compound renewal process input: An application to setting credit card limits," European Journal of Operational Research, Elsevier, vol. 274(3), pages 1012-1018.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:71:y:2005:i:1:p:47-60. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.