IDEAS home Printed from https://ideas.repec.org/a/spr/metrik/v81y2018i7d10.1007_s00184-018-0657-0.html
   My bibliography  Save this article

Hybrid estimators for small diffusion processes based on reduced data

Author

Listed:
  • Yusuke Kaino

    (Osaka University)

  • Masayuki Uchida

    (Osaka University
    Osaka University)

Abstract

We deal with the Bayes type estimators and the maximum likelihood type estimators of both drift and volatility parameters for small diffusion processes defined by stochastic differential equations with small perturbations from high frequency data. From the viewpoint of numerical analysis, initial Bayes type estimators for both drift and volatility parameters based on reduced data are required, and adaptive maximum likelihood type estimators with the initial Bayes type estimators, which are called hybrid estimators, are proposed. The asymptotic properties of the initial Bayes type estimators based on reduced data are derived and it is shown that the hybrid estimators have asymptotic normality and convergence of moments. Furthermore, a concrete example and simulation results are given.

Suggested Citation

  • Yusuke Kaino & Masayuki Uchida, 2018. "Hybrid estimators for small diffusion processes based on reduced data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(7), pages 745-773, October.
  • Handle: RePEc:spr:metrik:v:81:y:2018:i:7:d:10.1007_s00184-018-0657-0
    DOI: 10.1007/s00184-018-0657-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00184-018-0657-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00184-018-0657-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ma, Chunhua & Yang, Xu, 2014. "Small noise fluctuations of the CIR model driven by α-stable noises," Statistics & Probability Letters, Elsevier, vol. 94(C), pages 1-11.
    2. Uchida, Masayuki, 2008. "Approximate martingale estimating functions for stochastic differential equations with small noises," Stochastic Processes and their Applications, Elsevier, vol. 118(9), pages 1706-1721, September.
    3. Nakahiro Yoshida, 2011. "Polynomial type large deviation inequalities and quasi-likelihood analysis for stochastic differential equations," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(3), pages 431-479, June.
    4. Kutoyants, Yu.A., 2017. "On the multi-step MLE-process for ergodic diffusion," Stochastic Processes and their Applications, Elsevier, vol. 127(7), pages 2243-2261.
    5. Brouste, Alexandre & Fukasawa, Masaaki & Hino, Hideitsu & Iacus, Stefano & Kamatani, Kengo & Koike, Yuta & Masuda, Hiroki & Nomura, Ryosuke & Ogihara, Teppei & Shimuzu, Yasutaka & Uchida, Masayuki & Y, 2014. "The YUIMA Project: A Computational Framework for Simulation and Inference of Stochastic Differential Equations," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 57(i04).
    6. Naoto Kunitomo & Akihiko Takahashi, 2001. "The Asymptotic Expansion Approach to the Valuation of Interest Rate Contingent Claims," Mathematical Finance, Wiley Blackwell, vol. 11(1), pages 117-151, January.
    7. Long, Hongwei & Shimizu, Yasutaka & Sun, Wei, 2013. "Least squares estimators for discretely observed stochastic processes driven by small Lévy noises," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 422-439.
    8. Masayuki Uchida, 2010. "Contrast-based information criterion for ergodic diffusion processes from discrete observations," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(1), pages 161-187, February.
    9. Masayuki Uchida & Nakahiro Yoshida, 2014. "Adaptive Bayes type estimators of ergodic diffusion processes from discrete observations," Statistical Inference for Stochastic Processes, Springer, vol. 17(2), pages 181-219, July.
    10. Long, Hongwei & Ma, Chunhua & Shimizu, Yasutaka, 2017. "Least squares estimators for stochastic differential equations driven by small Lévy noises," Stochastic Processes and their Applications, Elsevier, vol. 127(5), pages 1475-1495.
    11. Masayuki Uchida & Nakahiro Yoshida, 2001. "Information Criteria in Model Selection for Mixing Processes," Statistical Inference for Stochastic Processes, Springer, vol. 4(1), pages 73-98, January.
    12. Akihiko Takahashi & Nakahiro Yoshida, 2004. "An Asymptotic Expansion Scheme for Optimal Investment Problems," Statistical Inference for Stochastic Processes, Springer, vol. 7(2), pages 153-188, May.
    13. Guy, Romain & Larédo, Catherine & Vergu, Elisabeta, 2014. "Parametric inference for discretely observed multidimensional diffusions with small diffusion coefficient," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 51-80.
    14. Yoshida, Nakahiro, 1992. "Estimation for diffusion processes from discrete observation," Journal of Multivariate Analysis, Elsevier, vol. 41(2), pages 220-242, May.
    15. Kengo Kamatani & Masayuki Uchida, 2015. "Hybrid multi-step estimators for stochastic differential equations based on sampled data," Statistical Inference for Stochastic Processes, Springer, vol. 18(2), pages 177-204, July.
    16. Stefano Iacus, 2000. "Semiparametric Estimation of the State of a Dynamical System with Small Noise," Statistical Inference for Stochastic Processes, Springer, vol. 3(3), pages 277-288, October.
    17. Yoshida, Nakahiro, 2003. "Conditional expansions and their applications," Stochastic Processes and their Applications, Elsevier, vol. 107(1), pages 53-81, September.
    18. Masayuki Uchida, 2004. "Estimation for Discretely Observed Small Diffusions Based on Approximate Martingale Estimating Functions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 31(4), pages 553-566, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tetsuya Kawai & Masayuki Uchida, 2023. "Adaptive inference for small diffusion processes based on sampled data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(6), pages 643-696, August.
    2. Shogo H. Nakakita & Yusuke Kaino & Masayuki Uchida, 2021. "Quasi-likelihood analysis and Bayes-type estimators of an ergodic diffusion plus noise," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(1), pages 177-225, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Long, Hongwei & Ma, Chunhua & Shimizu, Yasutaka, 2017. "Least squares estimators for stochastic differential equations driven by small Lévy noises," Stochastic Processes and their Applications, Elsevier, vol. 127(5), pages 1475-1495.
    2. Yusuke Kaino & Masayuki Uchida, 2018. "Hybrid estimators for stochastic differential equations from reduced data," Statistical Inference for Stochastic Processes, Springer, vol. 21(2), pages 435-454, July.
    3. Ren, Panpan & Wu, Jiang-Lun, 2021. "Least squares estimation for path-distribution dependent stochastic differential equations," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    4. Yasutaka Shimizu, 2017. "Threshold Estimation for Stochastic Processes with Small Noise," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(4), pages 951-988, December.
    5. Kengo Kamatani & Masayuki Uchida, 2015. "Hybrid multi-step estimators for stochastic differential equations based on sampled data," Statistical Inference for Stochastic Processes, Springer, vol. 18(2), pages 177-204, July.
    6. Yusuke Kaino & Shogo H. Nakakita & Masayuki Uchida, 2020. "Hybrid estimation for ergodic diffusion processes based on noisy discrete observations," Statistical Inference for Stochastic Processes, Springer, vol. 23(1), pages 171-198, April.
    7. Xuekang Zhang & Huisheng Shu & Haoran Yi, 2023. "Parameter Estimation for Ornstein–Uhlenbeck Driven by Ornstein–Uhlenbeck Processes with Small Lévy Noises," Journal of Theoretical Probability, Springer, vol. 36(1), pages 78-98, March.
    8. Long, Hongwei & Shimizu, Yasutaka & Sun, Wei, 2013. "Least squares estimators for discretely observed stochastic processes driven by small Lévy noises," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 422-439.
    9. Shoichi Eguchi & Hiroki Masuda, 2019. "Data driven time scale in Gaussian quasi-likelihood inference," Statistical Inference for Stochastic Processes, Springer, vol. 22(3), pages 383-430, October.
    10. Uchida, Masayuki, 2008. "Approximate martingale estimating functions for stochastic differential equations with small noises," Stochastic Processes and their Applications, Elsevier, vol. 118(9), pages 1706-1721, September.
    11. Uchida, Masayuki & Yoshida, Nakahiro, 2013. "Quasi likelihood analysis of volatility and nondegeneracy of statistical random field," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2851-2876.
    12. Long, Hongwei, 2009. "Least squares estimator for discretely observed Ornstein-Uhlenbeck processes with small Lévy noises," Statistics & Probability Letters, Elsevier, vol. 79(19), pages 2076-2085, October.
    13. Tetsuya Kawai & Masayuki Uchida, 2023. "Adaptive inference for small diffusion processes based on sampled data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(6), pages 643-696, August.
    14. Shogo H. Nakakita & Yusuke Kaino & Masayuki Uchida, 2021. "Quasi-likelihood analysis and Bayes-type estimators of an ergodic diffusion plus noise," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(1), pages 177-225, February.
    15. Yoshida, Nakahiro, 2023. "Asymptotic expansion and estimates of Wiener functionals," Stochastic Processes and their Applications, Elsevier, vol. 157(C), pages 176-248.
    16. Shu, Huisheng & Jiang, Ziwei & Zhang, Xuekang, 2023. "Parameter estimation for integrated Ornstein–Uhlenbeck processes with small Lévy noises," Statistics & Probability Letters, Elsevier, vol. 199(C).
    17. Nakahiro Yoshida, 2022. "Quasi-likelihood analysis and its applications," Statistical Inference for Stochastic Processes, Springer, vol. 25(1), pages 43-60, April.
    18. Masahiro Kurisaki, 2023. "Parameter estimation for ergodic linear SDEs from partial and discrete observations," Statistical Inference for Stochastic Processes, Springer, vol. 26(2), pages 279-330, July.
    19. Alessandro Gregorio & Francesco Iafrate, 2021. "Regularized bridge-type estimation with multiple penalties," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(5), pages 921-951, October.
    20. A. Gregorio & S. M. Iacus, 2019. "Empirical $$L^2$$ L 2 -distance test statistics for ergodic diffusions," Statistical Inference for Stochastic Processes, Springer, vol. 22(2), pages 233-261, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:81:y:2018:i:7:d:10.1007_s00184-018-0657-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.