IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v123y2013i7p2829-2850.html
   My bibliography  Save this article

Power variation from second order differences for pure jump semimartingales

Author

Listed:
  • Todorov, Viktor

Abstract

We introduce power variation constructed from powers of the second-order differences of a discretely observed pure-jump semimartingale processes. We derive the asymptotic behavior of the statistic in the setting of high-frequency observations of the underlying process with a fixed time span. Unlike the standard power variation (formed from the first-order differences of the process), the limit of our proposed statistic is determined solely by the jump component of the process regardless of the activity of the latter. We further show that an associated Central Limit Theorem holds for a wider range of activity of the jump process than for the standard power variation. We apply these results for estimation of the jump activity as well as the integrated stochastic scale.

Suggested Citation

  • Todorov, Viktor, 2013. "Power variation from second order differences for pure jump semimartingales," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2829-2850.
  • Handle: RePEc:eee:spapps:v:123:y:2013:i:7:p:2829-2850
    DOI: 10.1016/j.spa.2013.04.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414913000975
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2013.04.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yacine Aït-Sahalia & Jean Jacod, 2008. "Fisher's Information for Discretely Sampled Lévy Processes," Econometrica, Econometric Society, vol. 76(4), pages 727-761, July.
    2. Woerner Jeannette H. C., 2003. "Variational sums and power variation: a unifying approach to model selection and estimation in semimartingale models," Statistics & Risk Modeling, De Gruyter, vol. 21(1), pages 47-68, January.
    3. Todorov, Viktor, 2011. "Econometric analysis of jump-driven stochastic volatility models," Journal of Econometrics, Elsevier, vol. 160(1), pages 12-21, January.
    4. Diop, Assane & Jacod, Jean & Todorov, Viktor, 2013. "Central Limit Theorems for approximate quadratic variations of pure jump Itô semimartingales," Stochastic Processes and their Applications, Elsevier, vol. 123(3), pages 839-886.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Todorov, Viktor, 2019. "Nonparametric inference for the spectral measure of a bivariate pure-jump semimartingale," Stochastic Processes and their Applications, Elsevier, vol. 129(2), pages 419-451.
    2. Andersen, Torben G. & Bondarenko, Oleg & Todorov, Viktor & Tauchen, George, 2015. "The fine structure of equity-index option dynamics," Journal of Econometrics, Elsevier, vol. 187(2), pages 532-546.
    3. Alexandre Brouste & Hiroki Masuda, 2018. "Efficient estimation of stable Lévy process with symmetric jumps," Statistical Inference for Stochastic Processes, Springer, vol. 21(2), pages 289-307, July.
    4. Hounyo, Ulrich & Varneskov, Rasmus T., 2017. "A local stable bootstrap for power variations of pure-jump semimartingales and activity index estimation," Journal of Econometrics, Elsevier, vol. 198(1), pages 10-28.
    5. Z. Merrick Li & Oliver Linton, 2022. "A ReMeDI for Microstructure Noise," Econometrica, Econometric Society, vol. 90(1), pages 367-389, January.
    6. Ulrich Hounyo & Rasmus T. Varneskov, 2015. "A Local Stable Bootstrap for Power Variations of Pure-Jump Semimartingales and Activity Index Estimation," CREATES Research Papers 2015-26, Department of Economics and Business Economics, Aarhus University.
    7. Kubilius, K. & Skorniakov, V., 2016. "On some estimators of the Hurst index of the solution of SDE driven by a fractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 109(C), pages 159-167.
    8. Andersen, Torben G. & Li, Yingying & Todorov, Viktor & Zhou, Bo, 2023. "Volatility measurement with pockets of extreme return persistence," Journal of Econometrics, Elsevier, vol. 237(2).
    9. Ole Martin & Mathias Vetter, 2019. "Laws of large numbers for Hayashi–Yoshida-type functionals," Finance and Stochastics, Springer, vol. 23(3), pages 451-500, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Todorov, Viktor & Tauchen, George & Grynkiv, Iaryna, 2011. "Realized Laplace transforms for estimation of jump diffusive volatility models," Journal of Econometrics, Elsevier, vol. 164(2), pages 367-381, October.
    2. Mancini, Cecilia, 2011. "The speed of convergence of the Threshold estimator of integrated variance," Stochastic Processes and their Applications, Elsevier, vol. 121(4), pages 845-855, April.
    3. Almut Veraart & Luitgard Veraart, 2012. "Stochastic volatility and stochastic leverage," Annals of Finance, Springer, vol. 8(2), pages 205-233, May.
    4. Heiny, Johannes & Podolskij, Mark, 2021. "On estimation of quadratic variation for multivariate pure jump semimartingales," Stochastic Processes and their Applications, Elsevier, vol. 138(C), pages 234-254.
    5. Barndorff-Nielsen, Ole E. & Corcuera, José Manuel & Podolskij, Mark, 2009. "Power variation for Gaussian processes with stationary increments," Stochastic Processes and their Applications, Elsevier, vol. 119(6), pages 1845-1865, June.
    6. Segal, Gill & Shaliastovich, Ivan & Yaron, Amir, 2015. "Good and bad uncertainty: Macroeconomic and financial market implications," Journal of Financial Economics, Elsevier, vol. 117(2), pages 369-397.
    7. Alexandre Brouste & Hiroki Masuda, 2018. "Efficient estimation of stable Lévy process with symmetric jumps," Statistical Inference for Stochastic Processes, Springer, vol. 21(2), pages 289-307, July.
    8. Kanaya, Shin, 2017. "Convergence Rates Of Sums Of Α-Mixing Triangular Arrays: With An Application To Nonparametric Drift Function Estimation Of Continuous-Time Processes," Econometric Theory, Cambridge University Press, vol. 33(5), pages 1121-1153, October.
    9. Andras Fulop & Junye Li & Jun Yu, 2012. "Investigating Impacts of Self-Exciting Jumps in Returns and Volatility: A Bayesian Learning Approach," Global COE Hi-Stat Discussion Paper Series gd12-264, Institute of Economic Research, Hitotsubashi University.
    10. Michael C. Fu & Bingqing Li & Rongwen Wu & Tianqi Zhang, 2020. "Option Pricing Under a Discrete-Time Markov Switching Stochastic Volatility with Co-Jump Model," Papers 2006.15054, arXiv.org.
    11. Tim Bollerslev & Viktor Todorov, 2011. "Estimation of Jump Tails," Econometrica, Econometric Society, vol. 79(6), pages 1727-1783, November.
    12. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2006. "Predicting volatility: getting the most out of return data sampled at different frequencies," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 59-95.
    13. Ahmad, Wasim & Prakash, Ravi & Uddin, Gazi Salah & Chahal, Rishman Jot Kaur & Rahman, Md. Lutfur & Dutta, Anupam, 2020. "On the intraday dynamics of oil price and exchange rate: What can we learn from China and India?," Energy Economics, Elsevier, vol. 91(C).
    14. Ole E. Barndorff-Nielsen & José Manuel Corcuera & Mark Podolskij, 2009. "Multipower Variation for Brownian Semistationary Processes," CREATES Research Papers 2009-21, Department of Economics and Business Economics, Aarhus University.
    15. Gong, Xiao-li & Zhuang, Xin-tian, 2016. "Option pricing and hedging for optimized Lévy driven stochastic volatility models," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 118-127.
    16. Gong, Xiaoli & Zhuang, Xintian, 2017. "Pricing foreign equity option under stochastic volatility tempered stable Lévy processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 83-93.
    17. Massimiliano Caporin & Eduardo Rossi & Paolo Santucci de Magistris, 2011. "Conditional jumps in volatility and their economic determinants," "Marco Fanno" Working Papers 0138, Dipartimento di Scienze Economiche "Marco Fanno".
    18. Gong, Xiao-Li & Liu, Xi-Hua & Xiong, Xiong & Zhuang, Xin-Tian, 2018. "Modeling volatility dynamics using non-Gaussian stochastic volatility model based on band matrix routine," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 193-201.
    19. Massimiliano Caporin & Eduardo Rossi & Paolo Santucci de Magistris, 2016. "Volatility Jumps and Their Economic Determinants," Journal of Financial Econometrics, Oxford University Press, vol. 14(1), pages 29-80.
    20. Figueroa-López, José E., 2008. "Small-time moment asymptotics for Lévy processes," Statistics & Probability Letters, Elsevier, vol. 78(18), pages 3355-3365, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:123:y:2013:i:7:p:2829-2850. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.